Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpov Unicode version

Theorem mpov 5827
 Description: Operation with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.)
Assertion
Ref Expression
mpov
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   (,)

Proof of Theorem mpov
StepHypRef Expression
1 df-mpo 5745 . 2
2 vex 2661 . . . . 5
3 vex 2661 . . . . 5
42, 3pm3.2i 268 . . . 4
54biantrur 299 . . 3
65oprabbii 5792 . 2
71, 6eqtr4i 2139 1
 Colors of variables: wff set class Syntax hints:   wa 103   wceq 1314   wcel 1463  cvv 2658  coprab 5741   cmpo 5742 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-11 1467  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097 This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-v 2660  df-oprab 5744  df-mpo 5745 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator