ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpov Unicode version

Theorem mpov 6048
Description: Operation with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.)
Assertion
Ref Expression
mpov  |-  ( x  e.  _V ,  y  e.  _V  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  z  =  C }
Distinct variable groups:    x, z    y,
z    z, C
Allowed substitution hints:    C( x, y)

Proof of Theorem mpov
StepHypRef Expression
1 df-mpo 5962 . 2  |-  ( x  e.  _V ,  y  e.  _V  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  _V  /\  y  e.  _V )  /\  z  =  C
) }
2 vex 2776 . . . . 5  |-  x  e. 
_V
3 vex 2776 . . . . 5  |-  y  e. 
_V
42, 3pm3.2i 272 . . . 4  |-  ( x  e.  _V  /\  y  e.  _V )
54biantrur 303 . . 3  |-  ( z  =  C  <->  ( (
x  e.  _V  /\  y  e.  _V )  /\  z  =  C
) )
65oprabbii 6013 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  z  =  C }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. 
_V  /\  y  e.  _V )  /\  z  =  C ) }
71, 6eqtr4i 2230 1  |-  ( x  e.  _V ,  y  e.  _V  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  z  =  C }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373    e. wcel 2177   _Vcvv 2773   {coprab 5958    e. cmpo 5959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-v 2775  df-oprab 5961  df-mpo 5962
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator