ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpov Unicode version

Theorem mpov 6008
Description: Operation with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.)
Assertion
Ref Expression
mpov  |-  ( x  e.  _V ,  y  e.  _V  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  z  =  C }
Distinct variable groups:    x, z    y,
z    z, C
Allowed substitution hints:    C( x, y)

Proof of Theorem mpov
StepHypRef Expression
1 df-mpo 5923 . 2  |-  ( x  e.  _V ,  y  e.  _V  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  _V  /\  y  e.  _V )  /\  z  =  C
) }
2 vex 2763 . . . . 5  |-  x  e. 
_V
3 vex 2763 . . . . 5  |-  y  e. 
_V
42, 3pm3.2i 272 . . . 4  |-  ( x  e.  _V  /\  y  e.  _V )
54biantrur 303 . . 3  |-  ( z  =  C  <->  ( (
x  e.  _V  /\  y  e.  _V )  /\  z  =  C
) )
65oprabbii 5973 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  z  =  C }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. 
_V  /\  y  e.  _V )  /\  z  =  C ) }
71, 6eqtr4i 2217 1  |-  ( x  e.  _V ,  y  e.  _V  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  z  =  C }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760   {coprab 5919    e. cmpo 5920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-v 2762  df-oprab 5922  df-mpo 5923
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator