ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpov GIF version

Theorem mpov 6009
Description: Operation with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.)
Assertion
Ref Expression
mpov (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝐶}
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧   𝑧,𝐶
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem mpov
StepHypRef Expression
1 df-mpo 5924 . 2 (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ 𝑧 = 𝐶)}
2 vex 2763 . . . . 5 𝑥 ∈ V
3 vex 2763 . . . . 5 𝑦 ∈ V
42, 3pm3.2i 272 . . . 4 (𝑥 ∈ V ∧ 𝑦 ∈ V)
54biantrur 303 . . 3 (𝑧 = 𝐶 ↔ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ 𝑧 = 𝐶))
65oprabbii 5974 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝐶} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ 𝑧 = 𝐶)}
71, 6eqtr4i 2217 1 (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝐶}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wcel 2164  Vcvv 2760  {coprab 5920  cmpo 5921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-v 2762  df-oprab 5923  df-mpo 5924
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator