| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpov | GIF version | ||
| Description: Operation with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.) |
| Ref | Expression |
|---|---|
| mpov | ⊢ (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpo 5979 | . 2 ⊢ (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ 𝑧 = 𝐶)} | |
| 2 | vex 2782 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | vex 2782 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | pm3.2i 272 | . . . 4 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
| 5 | 4 | biantrur 303 | . . 3 ⊢ (𝑧 = 𝐶 ↔ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ 𝑧 = 𝐶)) |
| 6 | 5 | oprabbii 6030 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝐶} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ 𝑧 = 𝐶)} |
| 7 | 1, 6 | eqtr4i 2233 | 1 ⊢ (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝐶} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1375 ∈ wcel 2180 Vcvv 2779 {coprab 5975 ∈ cmpo 5976 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-11 1532 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-v 2781 df-oprab 5978 df-mpo 5979 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |