ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssoprab2i Unicode version

Theorem ssoprab2i 6093
Description: Inference of operation class abstraction subclass from implication. (Contributed by NM, 11-Nov-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypothesis
Ref Expression
ssoprab2i.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
ssoprab2i  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  C_  { <. <. x ,  y >. ,  z
>.  |  ps }
Distinct variable groups:    x, z    y,
z
Allowed substitution hints:    ph( x, y, z)    ps( x, y, z)

Proof of Theorem ssoprab2i
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ssoprab2i.1 . . . . 5  |-  ( ph  ->  ps )
21anim2i 342 . . . 4  |-  ( ( w  =  <. x ,  y >.  /\  ph )  ->  ( w  = 
<. x ,  y >.  /\  ps ) )
322eximi 1647 . . 3  |-  ( E. x E. y ( w  =  <. x ,  y >.  /\  ph )  ->  E. x E. y
( w  =  <. x ,  y >.  /\  ps ) )
43ssopab2i 4366 . 2  |-  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) } 
C_  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ps ) }
5 dfoprab2 6051 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }
6 dfoprab2 6051 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ps }  =  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ps ) }
74, 5, 63sstr4i 3265 1  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  C_  { <. <. x ,  y >. ,  z
>.  |  ps }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395   E.wex 1538    C_ wss 3197   <.cop 3669   {copab 4144   {coprab 6002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4146  df-oprab 6005
This theorem is referenced by:  mpomulf  8136
  Copyright terms: Public domain W3C validator