ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3dvdsdec Unicode version

Theorem 3dvdsdec 11598
Description: A decimal number is divisible by three iff the sum of its two "digits" is divisible by three. The term "digits" in its narrow sense is only correct if  A and  B actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers  A and  B, especially if  A is itself a decimal number, e.g.  A  = ; C D. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 8-Sep-2021.)
Hypotheses
Ref Expression
3dvdsdec.a  |-  A  e. 
NN0
3dvdsdec.b  |-  B  e. 
NN0
Assertion
Ref Expression
3dvdsdec  |-  ( 3 
|| ; A B  <->  3  ||  ( A  +  B )
)

Proof of Theorem 3dvdsdec
StepHypRef Expression
1 dfdec10 9209 . . . 4  |- ; A B  =  ( (; 1 0  x.  A
)  +  B )
2 9p1e10 9208 . . . . . . . 8  |-  ( 9  +  1 )  = ; 1
0
32eqcomi 2144 . . . . . . 7  |- ; 1 0  =  ( 9  +  1 )
43oveq1i 5792 . . . . . 6  |-  (; 1 0  x.  A
)  =  ( ( 9  +  1 )  x.  A )
5 9cn 8832 . . . . . . 7  |-  9  e.  CC
6 ax-1cn 7737 . . . . . . 7  |-  1  e.  CC
7 3dvdsdec.a . . . . . . . 8  |-  A  e. 
NN0
87nn0cni 9013 . . . . . . 7  |-  A  e.  CC
95, 6, 8adddiri 7801 . . . . . 6  |-  ( ( 9  +  1 )  x.  A )  =  ( ( 9  x.  A )  +  ( 1  x.  A ) )
108mulid2i 7793 . . . . . . 7  |-  ( 1  x.  A )  =  A
1110oveq2i 5793 . . . . . 6  |-  ( ( 9  x.  A )  +  ( 1  x.  A ) )  =  ( ( 9  x.  A )  +  A
)
124, 9, 113eqtri 2165 . . . . 5  |-  (; 1 0  x.  A
)  =  ( ( 9  x.  A )  +  A )
1312oveq1i 5792 . . . 4  |-  ( (; 1
0  x.  A )  +  B )  =  ( ( ( 9  x.  A )  +  A )  +  B
)
145, 8mulcli 7795 . . . . 5  |-  ( 9  x.  A )  e.  CC
15 3dvdsdec.b . . . . . 6  |-  B  e. 
NN0
1615nn0cni 9013 . . . . 5  |-  B  e.  CC
1714, 8, 16addassi 7798 . . . 4  |-  ( ( ( 9  x.  A
)  +  A )  +  B )  =  ( ( 9  x.  A )  +  ( A  +  B ) )
181, 13, 173eqtri 2165 . . 3  |- ; A B  =  ( ( 9  x.  A
)  +  ( A  +  B ) )
1918breq2i 3945 . 2  |-  ( 3 
|| ; A B  <->  3  ||  (
( 9  x.  A
)  +  ( A  +  B ) ) )
20 3z 9107 . . 3  |-  3  e.  ZZ
217nn0zi 9100 . . . 4  |-  A  e.  ZZ
2215nn0zi 9100 . . . 4  |-  B  e.  ZZ
23 zaddcl 9118 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  +  B
)  e.  ZZ )
2421, 22, 23mp2an 423 . . 3  |-  ( A  +  B )  e.  ZZ
25 9nn 8912 . . . . . 6  |-  9  e.  NN
2625nnzi 9099 . . . . 5  |-  9  e.  ZZ
27 zmulcl 9131 . . . . 5  |-  ( ( 9  e.  ZZ  /\  A  e.  ZZ )  ->  ( 9  x.  A
)  e.  ZZ )
2826, 21, 27mp2an 423 . . . 4  |-  ( 9  x.  A )  e.  ZZ
29 zmulcl 9131 . . . . . . 7  |-  ( ( 3  e.  ZZ  /\  A  e.  ZZ )  ->  ( 3  x.  A
)  e.  ZZ )
3020, 21, 29mp2an 423 . . . . . 6  |-  ( 3  x.  A )  e.  ZZ
31 dvdsmul1 11551 . . . . . 6  |-  ( ( 3  e.  ZZ  /\  ( 3  x.  A
)  e.  ZZ )  ->  3  ||  (
3  x.  ( 3  x.  A ) ) )
3220, 30, 31mp2an 423 . . . . 5  |-  3  ||  ( 3  x.  (
3  x.  A ) )
33 3t3e9 8901 . . . . . . . 8  |-  ( 3  x.  3 )  =  9
3433eqcomi 2144 . . . . . . 7  |-  9  =  ( 3  x.  3 )
3534oveq1i 5792 . . . . . 6  |-  ( 9  x.  A )  =  ( ( 3  x.  3 )  x.  A
)
36 3cn 8819 . . . . . . 7  |-  3  e.  CC
3736, 36, 8mulassi 7799 . . . . . 6  |-  ( ( 3  x.  3 )  x.  A )  =  ( 3  x.  (
3  x.  A ) )
3835, 37eqtri 2161 . . . . 5  |-  ( 9  x.  A )  =  ( 3  x.  (
3  x.  A ) )
3932, 38breqtrri 3963 . . . 4  |-  3  ||  ( 9  x.  A
)
4028, 39pm3.2i 270 . . 3  |-  ( ( 9  x.  A )  e.  ZZ  /\  3  ||  ( 9  x.  A
) )
41 dvdsadd2b 11576 . . 3  |-  ( ( 3  e.  ZZ  /\  ( A  +  B
)  e.  ZZ  /\  ( ( 9  x.  A )  e.  ZZ  /\  3  ||  ( 9  x.  A ) ) )  ->  ( 3 
||  ( A  +  B )  <->  3  ||  ( ( 9  x.  A )  +  ( A  +  B ) ) ) )
4220, 24, 40, 41mp3an 1316 . 2  |-  ( 3 
||  ( A  +  B )  <->  3  ||  ( ( 9  x.  A )  +  ( A  +  B ) ) )
4319, 42bitr4i 186 1  |-  ( 3 
|| ; A B  <->  3  ||  ( A  +  B )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    e. wcel 1481   class class class wbr 3937  (class class class)co 5782   0cc0 7644   1c1 7645    + caddc 7647    x. cmul 7649   3c3 8796   9c9 8802   NN0cn0 9001   ZZcz 9078  ;cdc 9206    || cdvds 11529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-5 8806  df-6 8807  df-7 8808  df-8 8809  df-9 8810  df-n0 9002  df-z 9079  df-dec 9207  df-dvds 11530
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator