ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3dvdsdec Unicode version

Theorem 3dvdsdec 11811
Description: A decimal number is divisible by three iff the sum of its two "digits" is divisible by three. The term "digits" in its narrow sense is only correct if  A and  B actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers  A and  B, especially if  A is itself a decimal number, e.g.,  A  = ; C D. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 8-Sep-2021.)
Hypotheses
Ref Expression
3dvdsdec.a  |-  A  e. 
NN0
3dvdsdec.b  |-  B  e. 
NN0
Assertion
Ref Expression
3dvdsdec  |-  ( 3 
|| ; A B  <->  3  ||  ( A  +  B )
)

Proof of Theorem 3dvdsdec
StepHypRef Expression
1 dfdec10 9333 . . . 4  |- ; A B  =  ( (; 1 0  x.  A
)  +  B )
2 9p1e10 9332 . . . . . . . 8  |-  ( 9  +  1 )  = ; 1
0
32eqcomi 2174 . . . . . . 7  |- ; 1 0  =  ( 9  +  1 )
43oveq1i 5860 . . . . . 6  |-  (; 1 0  x.  A
)  =  ( ( 9  +  1 )  x.  A )
5 9cn 8953 . . . . . . 7  |-  9  e.  CC
6 ax-1cn 7854 . . . . . . 7  |-  1  e.  CC
7 3dvdsdec.a . . . . . . . 8  |-  A  e. 
NN0
87nn0cni 9134 . . . . . . 7  |-  A  e.  CC
95, 6, 8adddiri 7918 . . . . . 6  |-  ( ( 9  +  1 )  x.  A )  =  ( ( 9  x.  A )  +  ( 1  x.  A ) )
108mulid2i 7910 . . . . . . 7  |-  ( 1  x.  A )  =  A
1110oveq2i 5861 . . . . . 6  |-  ( ( 9  x.  A )  +  ( 1  x.  A ) )  =  ( ( 9  x.  A )  +  A
)
124, 9, 113eqtri 2195 . . . . 5  |-  (; 1 0  x.  A
)  =  ( ( 9  x.  A )  +  A )
1312oveq1i 5860 . . . 4  |-  ( (; 1
0  x.  A )  +  B )  =  ( ( ( 9  x.  A )  +  A )  +  B
)
145, 8mulcli 7912 . . . . 5  |-  ( 9  x.  A )  e.  CC
15 3dvdsdec.b . . . . . 6  |-  B  e. 
NN0
1615nn0cni 9134 . . . . 5  |-  B  e.  CC
1714, 8, 16addassi 7915 . . . 4  |-  ( ( ( 9  x.  A
)  +  A )  +  B )  =  ( ( 9  x.  A )  +  ( A  +  B ) )
181, 13, 173eqtri 2195 . . 3  |- ; A B  =  ( ( 9  x.  A
)  +  ( A  +  B ) )
1918breq2i 3995 . 2  |-  ( 3 
|| ; A B  <->  3  ||  (
( 9  x.  A
)  +  ( A  +  B ) ) )
20 3z 9228 . . 3  |-  3  e.  ZZ
217nn0zi 9221 . . . 4  |-  A  e.  ZZ
2215nn0zi 9221 . . . 4  |-  B  e.  ZZ
23 zaddcl 9239 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  +  B
)  e.  ZZ )
2421, 22, 23mp2an 424 . . 3  |-  ( A  +  B )  e.  ZZ
25 9nn 9033 . . . . . 6  |-  9  e.  NN
2625nnzi 9220 . . . . 5  |-  9  e.  ZZ
27 zmulcl 9252 . . . . 5  |-  ( ( 9  e.  ZZ  /\  A  e.  ZZ )  ->  ( 9  x.  A
)  e.  ZZ )
2826, 21, 27mp2an 424 . . . 4  |-  ( 9  x.  A )  e.  ZZ
29 zmulcl 9252 . . . . . . 7  |-  ( ( 3  e.  ZZ  /\  A  e.  ZZ )  ->  ( 3  x.  A
)  e.  ZZ )
3020, 21, 29mp2an 424 . . . . . 6  |-  ( 3  x.  A )  e.  ZZ
31 dvdsmul1 11762 . . . . . 6  |-  ( ( 3  e.  ZZ  /\  ( 3  x.  A
)  e.  ZZ )  ->  3  ||  (
3  x.  ( 3  x.  A ) ) )
3220, 30, 31mp2an 424 . . . . 5  |-  3  ||  ( 3  x.  (
3  x.  A ) )
33 3t3e9 9022 . . . . . . . 8  |-  ( 3  x.  3 )  =  9
3433eqcomi 2174 . . . . . . 7  |-  9  =  ( 3  x.  3 )
3534oveq1i 5860 . . . . . 6  |-  ( 9  x.  A )  =  ( ( 3  x.  3 )  x.  A
)
36 3cn 8940 . . . . . . 7  |-  3  e.  CC
3736, 36, 8mulassi 7916 . . . . . 6  |-  ( ( 3  x.  3 )  x.  A )  =  ( 3  x.  (
3  x.  A ) )
3835, 37eqtri 2191 . . . . 5  |-  ( 9  x.  A )  =  ( 3  x.  (
3  x.  A ) )
3932, 38breqtrri 4014 . . . 4  |-  3  ||  ( 9  x.  A
)
4028, 39pm3.2i 270 . . 3  |-  ( ( 9  x.  A )  e.  ZZ  /\  3  ||  ( 9  x.  A
) )
41 dvdsadd2b 11789 . . 3  |-  ( ( 3  e.  ZZ  /\  ( A  +  B
)  e.  ZZ  /\  ( ( 9  x.  A )  e.  ZZ  /\  3  ||  ( 9  x.  A ) ) )  ->  ( 3 
||  ( A  +  B )  <->  3  ||  ( ( 9  x.  A )  +  ( A  +  B ) ) ) )
4220, 24, 40, 41mp3an 1332 . 2  |-  ( 3 
||  ( A  +  B )  <->  3  ||  ( ( 9  x.  A )  +  ( A  +  B ) ) )
4319, 42bitr4i 186 1  |-  ( 3 
|| ; A B  <->  3  ||  ( A  +  B )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    e. wcel 2141   class class class wbr 3987  (class class class)co 5850   0cc0 7761   1c1 7762    + caddc 7764    x. cmul 7766   3c3 8917   9c9 8923   NN0cn0 9122   ZZcz 9199  ;cdc 9330    || cdvds 11736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-ltadd 7877
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-br 3988  df-opab 4049  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-iota 5158  df-fun 5198  df-fv 5204  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-inn 8866  df-2 8924  df-3 8925  df-4 8926  df-5 8927  df-6 8928  df-7 8929  df-8 8930  df-9 8931  df-n0 9123  df-z 9200  df-dec 9331  df-dvds 11737
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator