| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3dvdsdec | Unicode version | ||
| Description: A decimal number is
divisible by three iff the sum of its two "digits"
is divisible by three. The term "digits" in its narrow sense
is only
correct if |
| Ref | Expression |
|---|---|
| 3dvdsdec.a |
|
| 3dvdsdec.b |
|
| Ref | Expression |
|---|---|
| 3dvdsdec |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdec10 9527 |
. . . 4
| |
| 2 | 9p1e10 9526 |
. . . . . . . 8
| |
| 3 | 2 | eqcomi 2210 |
. . . . . . 7
|
| 4 | 3 | oveq1i 5967 |
. . . . . 6
|
| 5 | 9cn 9144 |
. . . . . . 7
| |
| 6 | ax-1cn 8038 |
. . . . . . 7
| |
| 7 | 3dvdsdec.a |
. . . . . . . 8
| |
| 8 | 7 | nn0cni 9327 |
. . . . . . 7
|
| 9 | 5, 6, 8 | adddiri 8103 |
. . . . . 6
|
| 10 | 8 | mullidi 8095 |
. . . . . . 7
|
| 11 | 10 | oveq2i 5968 |
. . . . . 6
|
| 12 | 4, 9, 11 | 3eqtri 2231 |
. . . . 5
|
| 13 | 12 | oveq1i 5967 |
. . . 4
|
| 14 | 5, 8 | mulcli 8097 |
. . . . 5
|
| 15 | 3dvdsdec.b |
. . . . . 6
| |
| 16 | 15 | nn0cni 9327 |
. . . . 5
|
| 17 | 14, 8, 16 | addassi 8100 |
. . . 4
|
| 18 | 1, 13, 17 | 3eqtri 2231 |
. . 3
|
| 19 | 18 | breq2i 4059 |
. 2
|
| 20 | 3z 9421 |
. . 3
| |
| 21 | 7 | nn0zi 9414 |
. . . 4
|
| 22 | 15 | nn0zi 9414 |
. . . 4
|
| 23 | zaddcl 9432 |
. . . 4
| |
| 24 | 21, 22, 23 | mp2an 426 |
. . 3
|
| 25 | 9nn 9225 |
. . . . . 6
| |
| 26 | 25 | nnzi 9413 |
. . . . 5
|
| 27 | zmulcl 9446 |
. . . . 5
| |
| 28 | 26, 21, 27 | mp2an 426 |
. . . 4
|
| 29 | zmulcl 9446 |
. . . . . . 7
| |
| 30 | 20, 21, 29 | mp2an 426 |
. . . . . 6
|
| 31 | dvdsmul1 12199 |
. . . . . 6
| |
| 32 | 20, 30, 31 | mp2an 426 |
. . . . 5
|
| 33 | 3t3e9 9214 |
. . . . . . . 8
| |
| 34 | 33 | eqcomi 2210 |
. . . . . . 7
|
| 35 | 34 | oveq1i 5967 |
. . . . . 6
|
| 36 | 3cn 9131 |
. . . . . . 7
| |
| 37 | 36, 36, 8 | mulassi 8101 |
. . . . . 6
|
| 38 | 35, 37 | eqtri 2227 |
. . . . 5
|
| 39 | 32, 38 | breqtrri 4078 |
. . . 4
|
| 40 | 28, 39 | pm3.2i 272 |
. . 3
|
| 41 | dvdsadd2b 12226 |
. . 3
| |
| 42 | 20, 24, 40, 41 | mp3an 1350 |
. 2
|
| 43 | 19, 42 | bitr4i 187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-iota 5241 df-fun 5282 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 df-7 9120 df-8 9121 df-9 9122 df-n0 9316 df-z 9393 df-dec 9525 df-dvds 12174 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |