| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3dvdsdec | Unicode version | ||
| Description: A decimal number is
divisible by three iff the sum of its two "digits"
is divisible by three. The term "digits" in its narrow sense
is only
correct if |
| Ref | Expression |
|---|---|
| 3dvdsdec.a |
|
| 3dvdsdec.b |
|
| Ref | Expression |
|---|---|
| 3dvdsdec |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdec10 9489 |
. . . 4
| |
| 2 | 9p1e10 9488 |
. . . . . . . 8
| |
| 3 | 2 | eqcomi 2208 |
. . . . . . 7
|
| 4 | 3 | oveq1i 5944 |
. . . . . 6
|
| 5 | 9cn 9106 |
. . . . . . 7
| |
| 6 | ax-1cn 8000 |
. . . . . . 7
| |
| 7 | 3dvdsdec.a |
. . . . . . . 8
| |
| 8 | 7 | nn0cni 9289 |
. . . . . . 7
|
| 9 | 5, 6, 8 | adddiri 8065 |
. . . . . 6
|
| 10 | 8 | mullidi 8057 |
. . . . . . 7
|
| 11 | 10 | oveq2i 5945 |
. . . . . 6
|
| 12 | 4, 9, 11 | 3eqtri 2229 |
. . . . 5
|
| 13 | 12 | oveq1i 5944 |
. . . 4
|
| 14 | 5, 8 | mulcli 8059 |
. . . . 5
|
| 15 | 3dvdsdec.b |
. . . . . 6
| |
| 16 | 15 | nn0cni 9289 |
. . . . 5
|
| 17 | 14, 8, 16 | addassi 8062 |
. . . 4
|
| 18 | 1, 13, 17 | 3eqtri 2229 |
. . 3
|
| 19 | 18 | breq2i 4051 |
. 2
|
| 20 | 3z 9383 |
. . 3
| |
| 21 | 7 | nn0zi 9376 |
. . . 4
|
| 22 | 15 | nn0zi 9376 |
. . . 4
|
| 23 | zaddcl 9394 |
. . . 4
| |
| 24 | 21, 22, 23 | mp2an 426 |
. . 3
|
| 25 | 9nn 9187 |
. . . . . 6
| |
| 26 | 25 | nnzi 9375 |
. . . . 5
|
| 27 | zmulcl 9408 |
. . . . 5
| |
| 28 | 26, 21, 27 | mp2an 426 |
. . . 4
|
| 29 | zmulcl 9408 |
. . . . . . 7
| |
| 30 | 20, 21, 29 | mp2an 426 |
. . . . . 6
|
| 31 | dvdsmul1 12043 |
. . . . . 6
| |
| 32 | 20, 30, 31 | mp2an 426 |
. . . . 5
|
| 33 | 3t3e9 9176 |
. . . . . . . 8
| |
| 34 | 33 | eqcomi 2208 |
. . . . . . 7
|
| 35 | 34 | oveq1i 5944 |
. . . . . 6
|
| 36 | 3cn 9093 |
. . . . . . 7
| |
| 37 | 36, 36, 8 | mulassi 8063 |
. . . . . 6
|
| 38 | 35, 37 | eqtri 2225 |
. . . . 5
|
| 39 | 32, 38 | breqtrri 4070 |
. . . 4
|
| 40 | 28, 39 | pm3.2i 272 |
. . 3
|
| 41 | dvdsadd2b 12070 |
. . 3
| |
| 42 | 20, 24, 40, 41 | mp3an 1349 |
. 2
|
| 43 | 19, 42 | bitr4i 187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-iota 5229 df-fun 5270 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-inn 9019 df-2 9077 df-3 9078 df-4 9079 df-5 9080 df-6 9081 df-7 9082 df-8 9083 df-9 9084 df-n0 9278 df-z 9355 df-dec 9487 df-dvds 12018 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |