ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3dvdsdec Unicode version

Theorem 3dvdsdec 12047
Description: A decimal number is divisible by three iff the sum of its two "digits" is divisible by three. The term "digits" in its narrow sense is only correct if  A and  B actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers  A and  B, especially if  A is itself a decimal number, e.g.,  A  = ; C D. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 8-Sep-2021.)
Hypotheses
Ref Expression
3dvdsdec.a  |-  A  e. 
NN0
3dvdsdec.b  |-  B  e. 
NN0
Assertion
Ref Expression
3dvdsdec  |-  ( 3 
|| ; A B  <->  3  ||  ( A  +  B )
)

Proof of Theorem 3dvdsdec
StepHypRef Expression
1 dfdec10 9477 . . . 4  |- ; A B  =  ( (; 1 0  x.  A
)  +  B )
2 9p1e10 9476 . . . . . . . 8  |-  ( 9  +  1 )  = ; 1
0
32eqcomi 2200 . . . . . . 7  |- ; 1 0  =  ( 9  +  1 )
43oveq1i 5935 . . . . . 6  |-  (; 1 0  x.  A
)  =  ( ( 9  +  1 )  x.  A )
5 9cn 9095 . . . . . . 7  |-  9  e.  CC
6 ax-1cn 7989 . . . . . . 7  |-  1  e.  CC
7 3dvdsdec.a . . . . . . . 8  |-  A  e. 
NN0
87nn0cni 9278 . . . . . . 7  |-  A  e.  CC
95, 6, 8adddiri 8054 . . . . . 6  |-  ( ( 9  +  1 )  x.  A )  =  ( ( 9  x.  A )  +  ( 1  x.  A ) )
108mullidi 8046 . . . . . . 7  |-  ( 1  x.  A )  =  A
1110oveq2i 5936 . . . . . 6  |-  ( ( 9  x.  A )  +  ( 1  x.  A ) )  =  ( ( 9  x.  A )  +  A
)
124, 9, 113eqtri 2221 . . . . 5  |-  (; 1 0  x.  A
)  =  ( ( 9  x.  A )  +  A )
1312oveq1i 5935 . . . 4  |-  ( (; 1
0  x.  A )  +  B )  =  ( ( ( 9  x.  A )  +  A )  +  B
)
145, 8mulcli 8048 . . . . 5  |-  ( 9  x.  A )  e.  CC
15 3dvdsdec.b . . . . . 6  |-  B  e. 
NN0
1615nn0cni 9278 . . . . 5  |-  B  e.  CC
1714, 8, 16addassi 8051 . . . 4  |-  ( ( ( 9  x.  A
)  +  A )  +  B )  =  ( ( 9  x.  A )  +  ( A  +  B ) )
181, 13, 173eqtri 2221 . . 3  |- ; A B  =  ( ( 9  x.  A
)  +  ( A  +  B ) )
1918breq2i 4042 . 2  |-  ( 3 
|| ; A B  <->  3  ||  (
( 9  x.  A
)  +  ( A  +  B ) ) )
20 3z 9372 . . 3  |-  3  e.  ZZ
217nn0zi 9365 . . . 4  |-  A  e.  ZZ
2215nn0zi 9365 . . . 4  |-  B  e.  ZZ
23 zaddcl 9383 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  +  B
)  e.  ZZ )
2421, 22, 23mp2an 426 . . 3  |-  ( A  +  B )  e.  ZZ
25 9nn 9176 . . . . . 6  |-  9  e.  NN
2625nnzi 9364 . . . . 5  |-  9  e.  ZZ
27 zmulcl 9396 . . . . 5  |-  ( ( 9  e.  ZZ  /\  A  e.  ZZ )  ->  ( 9  x.  A
)  e.  ZZ )
2826, 21, 27mp2an 426 . . . 4  |-  ( 9  x.  A )  e.  ZZ
29 zmulcl 9396 . . . . . . 7  |-  ( ( 3  e.  ZZ  /\  A  e.  ZZ )  ->  ( 3  x.  A
)  e.  ZZ )
3020, 21, 29mp2an 426 . . . . . 6  |-  ( 3  x.  A )  e.  ZZ
31 dvdsmul1 11995 . . . . . 6  |-  ( ( 3  e.  ZZ  /\  ( 3  x.  A
)  e.  ZZ )  ->  3  ||  (
3  x.  ( 3  x.  A ) ) )
3220, 30, 31mp2an 426 . . . . 5  |-  3  ||  ( 3  x.  (
3  x.  A ) )
33 3t3e9 9165 . . . . . . . 8  |-  ( 3  x.  3 )  =  9
3433eqcomi 2200 . . . . . . 7  |-  9  =  ( 3  x.  3 )
3534oveq1i 5935 . . . . . 6  |-  ( 9  x.  A )  =  ( ( 3  x.  3 )  x.  A
)
36 3cn 9082 . . . . . . 7  |-  3  e.  CC
3736, 36, 8mulassi 8052 . . . . . 6  |-  ( ( 3  x.  3 )  x.  A )  =  ( 3  x.  (
3  x.  A ) )
3835, 37eqtri 2217 . . . . 5  |-  ( 9  x.  A )  =  ( 3  x.  (
3  x.  A ) )
3932, 38breqtrri 4061 . . . 4  |-  3  ||  ( 9  x.  A
)
4028, 39pm3.2i 272 . . 3  |-  ( ( 9  x.  A )  e.  ZZ  /\  3  ||  ( 9  x.  A
) )
41 dvdsadd2b 12022 . . 3  |-  ( ( 3  e.  ZZ  /\  ( A  +  B
)  e.  ZZ  /\  ( ( 9  x.  A )  e.  ZZ  /\  3  ||  ( 9  x.  A ) ) )  ->  ( 3 
||  ( A  +  B )  <->  3  ||  ( ( 9  x.  A )  +  ( A  +  B ) ) ) )
4220, 24, 40, 41mp3an 1348 . 2  |-  ( 3 
||  ( A  +  B )  <->  3  ||  ( ( 9  x.  A )  +  ( A  +  B ) ) )
4319, 42bitr4i 187 1  |-  ( 3 
|| ; A B  <->  3  ||  ( A  +  B )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2167   class class class wbr 4034  (class class class)co 5925   0cc0 7896   1c1 7897    + caddc 7899    x. cmul 7901   3c3 9059   9c9 9065   NN0cn0 9266   ZZcz 9343  ;cdc 9474    || cdvds 11969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-z 9344  df-dec 9475  df-dvds 11970
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator