Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3dvdsdec | Unicode version |
Description: A decimal number is divisible by three iff the sum of its two "digits" is divisible by three. The term "digits" in its narrow sense is only correct if and actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers and , especially if is itself a decimal number, e.g., ;. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 8-Sep-2021.) |
Ref | Expression |
---|---|
3dvdsdec.a | |
3dvdsdec.b |
Ref | Expression |
---|---|
3dvdsdec | ; |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdec10 9333 | . . . 4 ; ; | |
2 | 9p1e10 9332 | . . . . . . . 8 ; | |
3 | 2 | eqcomi 2174 | . . . . . . 7 ; |
4 | 3 | oveq1i 5860 | . . . . . 6 ; |
5 | 9cn 8953 | . . . . . . 7 | |
6 | ax-1cn 7854 | . . . . . . 7 | |
7 | 3dvdsdec.a | . . . . . . . 8 | |
8 | 7 | nn0cni 9134 | . . . . . . 7 |
9 | 5, 6, 8 | adddiri 7918 | . . . . . 6 |
10 | 8 | mulid2i 7910 | . . . . . . 7 |
11 | 10 | oveq2i 5861 | . . . . . 6 |
12 | 4, 9, 11 | 3eqtri 2195 | . . . . 5 ; |
13 | 12 | oveq1i 5860 | . . . 4 ; |
14 | 5, 8 | mulcli 7912 | . . . . 5 |
15 | 3dvdsdec.b | . . . . . 6 | |
16 | 15 | nn0cni 9134 | . . . . 5 |
17 | 14, 8, 16 | addassi 7915 | . . . 4 |
18 | 1, 13, 17 | 3eqtri 2195 | . . 3 ; |
19 | 18 | breq2i 3995 | . 2 ; |
20 | 3z 9228 | . . 3 | |
21 | 7 | nn0zi 9221 | . . . 4 |
22 | 15 | nn0zi 9221 | . . . 4 |
23 | zaddcl 9239 | . . . 4 | |
24 | 21, 22, 23 | mp2an 424 | . . 3 |
25 | 9nn 9033 | . . . . . 6 | |
26 | 25 | nnzi 9220 | . . . . 5 |
27 | zmulcl 9252 | . . . . 5 | |
28 | 26, 21, 27 | mp2an 424 | . . . 4 |
29 | zmulcl 9252 | . . . . . . 7 | |
30 | 20, 21, 29 | mp2an 424 | . . . . . 6 |
31 | dvdsmul1 11762 | . . . . . 6 | |
32 | 20, 30, 31 | mp2an 424 | . . . . 5 |
33 | 3t3e9 9022 | . . . . . . . 8 | |
34 | 33 | eqcomi 2174 | . . . . . . 7 |
35 | 34 | oveq1i 5860 | . . . . . 6 |
36 | 3cn 8940 | . . . . . . 7 | |
37 | 36, 36, 8 | mulassi 7916 | . . . . . 6 |
38 | 35, 37 | eqtri 2191 | . . . . 5 |
39 | 32, 38 | breqtrri 4014 | . . . 4 |
40 | 28, 39 | pm3.2i 270 | . . 3 |
41 | dvdsadd2b 11789 | . . 3 | |
42 | 20, 24, 40, 41 | mp3an 1332 | . 2 |
43 | 19, 42 | bitr4i 186 | 1 ; |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wcel 2141 class class class wbr 3987 (class class class)co 5850 cc0 7761 c1 7762 caddc 7764 cmul 7766 c3 8917 c9 8923 cn0 9122 cz 9199 ;cdc 9330 cdvds 11736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-mulrcl 7860 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-1rid 7868 ax-0id 7869 ax-rnegex 7870 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-ltadd 7877 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-opab 4049 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-iota 5158 df-fun 5198 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-inn 8866 df-2 8924 df-3 8925 df-4 8926 df-5 8927 df-6 8928 df-7 8929 df-8 8930 df-9 8931 df-n0 9123 df-z 9200 df-dec 9331 df-dvds 11737 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |