| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mulassi | GIF version | ||
| Description: Associative law for multiplication. (Contributed by NM, 23-Nov-1994.) | 
| Ref | Expression | 
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ | 
| axi.2 | ⊢ 𝐵 ∈ ℂ | 
| axi.3 | ⊢ 𝐶 ∈ ℂ | 
| Ref | Expression | 
|---|---|
| mulassi | ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
| 4 | mulass 8010 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | |
| 5 | 1, 2, 3, 4 | mp3an 1348 | 1 ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ∈ wcel 2167 (class class class)co 5922 ℂcc 7877 · cmul 7884 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-mulass 7982 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: 8th4div3 9210 numma 9500 decbin0 9596 sq4e2t8 10729 3dec 10806 ef01bndlem 11921 3dvdsdec 12030 3dvds2dec 12031 dec5dvds 12581 karatsuba 12599 sincos4thpi 15076 sincos6thpi 15078 2lgsoddprmlem3d 15351 | 
| Copyright terms: Public domain | W3C validator |