ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sincos6thpi Unicode version

Theorem sincos6thpi 15314
Description: The sine and cosine of  pi  /  6. (Contributed by Paul Chapman, 25-Jan-2008.) (Revised by Wolf Lammen, 24-Sep-2020.)
Assertion
Ref Expression
sincos6thpi  |-  ( ( sin `  ( pi 
/  6 ) )  =  ( 1  / 
2 )  /\  ( cos `  ( pi  / 
6 ) )  =  ( ( sqr `  3
)  /  2 ) )

Proof of Theorem sincos6thpi
StepHypRef Expression
1 2cn 9107 . . . . 5  |-  2  e.  CC
21a1i 9 . . . 4  |-  ( T. 
->  2  e.  CC )
3 pire 15258 . . . . . . . 8  |-  pi  e.  RR
4 6re 9117 . . . . . . . 8  |-  6  e.  RR
5 6pos 9137 . . . . . . . . 9  |-  0  <  6
64, 5gt0ap0ii 8701 . . . . . . . 8  |-  6 #  0
73, 4, 6redivclapi 8852 . . . . . . 7  |-  ( pi 
/  6 )  e.  RR
87recni 8084 . . . . . 6  |-  ( pi 
/  6 )  e.  CC
9 sincl 12017 . . . . . 6  |-  ( ( pi  /  6 )  e.  CC  ->  ( sin `  ( pi  / 
6 ) )  e.  CC )
108, 9ax-mp 5 . . . . 5  |-  ( sin `  ( pi  /  6
) )  e.  CC
1110a1i 9 . . . 4  |-  ( T. 
->  ( sin `  (
pi  /  6 ) )  e.  CC )
12 2ap0 9129 . . . . 5  |-  2 #  0
1312a1i 9 . . . 4  |-  ( T. 
->  2 #  0 )
14 recoscl 12032 . . . . . . . . . . . 12  |-  ( ( pi  /  6 )  e.  RR  ->  ( cos `  ( pi  / 
6 ) )  e.  RR )
157, 14ax-mp 5 . . . . . . . . . . 11  |-  ( cos `  ( pi  /  6
) )  e.  RR
1615recni 8084 . . . . . . . . . 10  |-  ( cos `  ( pi  /  6
) )  e.  CC
171, 10, 16mulassi 8081 . . . . . . . . 9  |-  ( ( 2  x.  ( sin `  ( pi  /  6
) ) )  x.  ( cos `  (
pi  /  6 ) ) )  =  ( 2  x.  ( ( sin `  ( pi 
/  6 ) )  x.  ( cos `  (
pi  /  6 ) ) ) )
18 sin2t 12060 . . . . . . . . . 10  |-  ( ( pi  /  6 )  e.  CC  ->  ( sin `  ( 2  x.  ( pi  /  6
) ) )  =  ( 2  x.  (
( sin `  (
pi  /  6 ) )  x.  ( cos `  ( pi  /  6
) ) ) ) )
198, 18ax-mp 5 . . . . . . . . 9  |-  ( sin `  ( 2  x.  (
pi  /  6 ) ) )  =  ( 2  x.  ( ( sin `  ( pi 
/  6 ) )  x.  ( cos `  (
pi  /  6 ) ) ) )
2017, 19eqtr4i 2229 . . . . . . . 8  |-  ( ( 2  x.  ( sin `  ( pi  /  6
) ) )  x.  ( cos `  (
pi  /  6 ) ) )  =  ( sin `  ( 2  x.  ( pi  / 
6 ) ) )
21 3cn 9111 . . . . . . . . . . . 12  |-  3  e.  CC
22 3ap0 9132 . . . . . . . . . . . 12  |-  3 #  0
231, 21, 22divclapi 8827 . . . . . . . . . . 11  |-  ( 2  /  3 )  e.  CC
2421, 22recclapi 8815 . . . . . . . . . . 11  |-  ( 1  /  3 )  e.  CC
25 df-3 9096 . . . . . . . . . . . . 13  |-  3  =  ( 2  +  1 )
2625oveq1i 5954 . . . . . . . . . . . 12  |-  ( 3  /  3 )  =  ( ( 2  +  1 )  /  3
)
2721, 22dividapi 8818 . . . . . . . . . . . 12  |-  ( 3  /  3 )  =  1
28 ax-1cn 8018 . . . . . . . . . . . . 13  |-  1  e.  CC
291, 28, 21, 22divdirapi 8842 . . . . . . . . . . . 12  |-  ( ( 2  +  1 )  /  3 )  =  ( ( 2  / 
3 )  +  ( 1  /  3 ) )
3026, 27, 293eqtr3ri 2235 . . . . . . . . . . 11  |-  ( ( 2  /  3 )  +  ( 1  / 
3 ) )  =  1
31 sincosq1eq 15311 . . . . . . . . . . 11  |-  ( ( ( 2  /  3
)  e.  CC  /\  ( 1  /  3
)  e.  CC  /\  ( ( 2  / 
3 )  +  ( 1  /  3 ) )  =  1 )  ->  ( sin `  (
( 2  /  3
)  x.  ( pi 
/  2 ) ) )  =  ( cos `  ( ( 1  / 
3 )  x.  (
pi  /  2 ) ) ) )
3223, 24, 30, 31mp3an 1350 . . . . . . . . . 10  |-  ( sin `  ( ( 2  / 
3 )  x.  (
pi  /  2 ) ) )  =  ( cos `  ( ( 1  /  3 )  x.  ( pi  / 
2 ) ) )
33 picn 15259 . . . . . . . . . . . . 13  |-  pi  e.  CC
341, 21, 33, 1, 22, 12divmuldivapi 8845 . . . . . . . . . . . 12  |-  ( ( 2  /  3 )  x.  ( pi  / 
2 ) )  =  ( ( 2  x.  pi )  /  (
3  x.  2 ) )
35 3t2e6 9193 . . . . . . . . . . . . 13  |-  ( 3  x.  2 )  =  6
3635oveq2i 5955 . . . . . . . . . . . 12  |-  ( ( 2  x.  pi )  /  ( 3  x.  2 ) )  =  ( ( 2  x.  pi )  /  6
)
37 6cn 9118 . . . . . . . . . . . . 13  |-  6  e.  CC
381, 33, 37, 6divassapi 8841 . . . . . . . . . . . 12  |-  ( ( 2  x.  pi )  /  6 )  =  ( 2  x.  (
pi  /  6 ) )
3934, 36, 383eqtri 2230 . . . . . . . . . . 11  |-  ( ( 2  /  3 )  x.  ( pi  / 
2 ) )  =  ( 2  x.  (
pi  /  6 ) )
4039fveq2i 5579 . . . . . . . . . 10  |-  ( sin `  ( ( 2  / 
3 )  x.  (
pi  /  2 ) ) )  =  ( sin `  ( 2  x.  ( pi  / 
6 ) ) )
4132, 40eqtr3i 2228 . . . . . . . . 9  |-  ( cos `  ( ( 1  / 
3 )  x.  (
pi  /  2 ) ) )  =  ( sin `  ( 2  x.  ( pi  / 
6 ) ) )
4228, 21, 33, 1, 22, 12divmuldivapi 8845 . . . . . . . . . . 11  |-  ( ( 1  /  3 )  x.  ( pi  / 
2 ) )  =  ( ( 1  x.  pi )  /  (
3  x.  2 ) )
4333mullidi 8075 . . . . . . . . . . . 12  |-  ( 1  x.  pi )  =  pi
4443, 35oveq12i 5956 . . . . . . . . . . 11  |-  ( ( 1  x.  pi )  /  ( 3  x.  2 ) )  =  ( pi  /  6
)
4542, 44eqtri 2226 . . . . . . . . . 10  |-  ( ( 1  /  3 )  x.  ( pi  / 
2 ) )  =  ( pi  /  6
)
4645fveq2i 5579 . . . . . . . . 9  |-  ( cos `  ( ( 1  / 
3 )  x.  (
pi  /  2 ) ) )  =  ( cos `  ( pi 
/  6 ) )
4741, 46eqtr3i 2228 . . . . . . . 8  |-  ( sin `  ( 2  x.  (
pi  /  6 ) ) )  =  ( cos `  ( pi 
/  6 ) )
4820, 47eqtri 2226 . . . . . . 7  |-  ( ( 2  x.  ( sin `  ( pi  /  6
) ) )  x.  ( cos `  (
pi  /  6 ) ) )  =  ( cos `  ( pi 
/  6 ) )
4916mullidi 8075 . . . . . . 7  |-  ( 1  x.  ( cos `  (
pi  /  6 ) ) )  =  ( cos `  ( pi 
/  6 ) )
5048, 49eqtr4i 2229 . . . . . 6  |-  ( ( 2  x.  ( sin `  ( pi  /  6
) ) )  x.  ( cos `  (
pi  /  6 ) ) )  =  ( 1  x.  ( cos `  ( pi  /  6
) ) )
511, 10mulcli 8077 . . . . . . 7  |-  ( 2  x.  ( sin `  (
pi  /  6 ) ) )  e.  CC
52 pipos 15260 . . . . . . . . . . . . 13  |-  0  <  pi
533, 4, 52, 5divgt0ii 8992 . . . . . . . . . . . 12  |-  0  <  ( pi  /  6
)
54 2lt6 9219 . . . . . . . . . . . . 13  |-  2  <  6
55 2re 9106 . . . . . . . . . . . . . . 15  |-  2  e.  RR
56 2pos 9127 . . . . . . . . . . . . . . 15  |-  0  <  2
5755, 56pm3.2i 272 . . . . . . . . . . . . . 14  |-  ( 2  e.  RR  /\  0  <  2 )
584, 5pm3.2i 272 . . . . . . . . . . . . . 14  |-  ( 6  e.  RR  /\  0  <  6 )
593, 52pm3.2i 272 . . . . . . . . . . . . . 14  |-  ( pi  e.  RR  /\  0  <  pi )
60 ltdiv2 8960 . . . . . . . . . . . . . 14  |-  ( ( ( 2  e.  RR  /\  0  <  2 )  /\  ( 6  e.  RR  /\  0  <  6 )  /\  (
pi  e.  RR  /\  0  <  pi ) )  ->  ( 2  <  6  <->  ( pi  / 
6 )  <  (
pi  /  2 ) ) )
6157, 58, 59, 60mp3an 1350 . . . . . . . . . . . . 13  |-  ( 2  <  6  <->  ( pi  /  6 )  <  (
pi  /  2 ) )
6254, 61mpbi 145 . . . . . . . . . . . 12  |-  ( pi 
/  6 )  < 
( pi  /  2
)
63 0re 8072 . . . . . . . . . . . . 13  |-  0  e.  RR
64 halfpire 15264 . . . . . . . . . . . . 13  |-  ( pi 
/  2 )  e.  RR
65 rexr 8118 . . . . . . . . . . . . . 14  |-  ( 0  e.  RR  ->  0  e.  RR* )
66 rexr 8118 . . . . . . . . . . . . . 14  |-  ( ( pi  /  2 )  e.  RR  ->  (
pi  /  2 )  e.  RR* )
67 elioo2 10043 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR*  /\  (
pi  /  2 )  e.  RR* )  ->  (
( pi  /  6
)  e.  ( 0 (,) ( pi  / 
2 ) )  <->  ( (
pi  /  6 )  e.  RR  /\  0  <  ( pi  /  6
)  /\  ( pi  /  6 )  <  (
pi  /  2 ) ) ) )
6865, 66, 67syl2an 289 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  ( pi  /  2
)  e.  RR )  ->  ( ( pi 
/  6 )  e.  ( 0 (,) (
pi  /  2 ) )  <->  ( ( pi 
/  6 )  e.  RR  /\  0  < 
( pi  /  6
)  /\  ( pi  /  6 )  <  (
pi  /  2 ) ) ) )
6963, 64, 68mp2an 426 . . . . . . . . . . . 12  |-  ( ( pi  /  6 )  e.  ( 0 (,) ( pi  /  2
) )  <->  ( (
pi  /  6 )  e.  RR  /\  0  <  ( pi  /  6
)  /\  ( pi  /  6 )  <  (
pi  /  2 ) ) )
707, 53, 62, 69mpbir3an 1182 . . . . . . . . . . 11  |-  ( pi 
/  6 )  e.  ( 0 (,) (
pi  /  2 ) )
71 sincosq1sgn 15298 . . . . . . . . . . 11  |-  ( ( pi  /  6 )  e.  ( 0 (,) ( pi  /  2
) )  ->  (
0  <  ( sin `  ( pi  /  6
) )  /\  0  <  ( cos `  (
pi  /  6 ) ) ) )
7270, 71ax-mp 5 . . . . . . . . . 10  |-  ( 0  <  ( sin `  (
pi  /  6 ) )  /\  0  < 
( cos `  (
pi  /  6 ) ) )
7372simpri 113 . . . . . . . . 9  |-  0  <  ( cos `  (
pi  /  6 ) )
7415, 73gt0ap0ii 8701 . . . . . . . 8  |-  ( cos `  ( pi  /  6
) ) #  0
7516, 74pm3.2i 272 . . . . . . 7  |-  ( ( cos `  ( pi 
/  6 ) )  e.  CC  /\  ( cos `  ( pi  / 
6 ) ) #  0 )
76 mulcanap2 8739 . . . . . . 7  |-  ( ( ( 2  x.  ( sin `  ( pi  / 
6 ) ) )  e.  CC  /\  1  e.  CC  /\  ( ( cos `  ( pi 
/  6 ) )  e.  CC  /\  ( cos `  ( pi  / 
6 ) ) #  0 ) )  ->  (
( ( 2  x.  ( sin `  (
pi  /  6 ) ) )  x.  ( cos `  ( pi  / 
6 ) ) )  =  ( 1  x.  ( cos `  (
pi  /  6 ) ) )  <->  ( 2  x.  ( sin `  (
pi  /  6 ) ) )  =  1 ) )
7751, 28, 75, 76mp3an 1350 . . . . . 6  |-  ( ( ( 2  x.  ( sin `  ( pi  / 
6 ) ) )  x.  ( cos `  (
pi  /  6 ) ) )  =  ( 1  x.  ( cos `  ( pi  /  6
) ) )  <->  ( 2  x.  ( sin `  (
pi  /  6 ) ) )  =  1 )
7850, 77mpbi 145 . . . . 5  |-  ( 2  x.  ( sin `  (
pi  /  6 ) ) )  =  1
7978a1i 9 . . . 4  |-  ( T. 
->  ( 2  x.  ( sin `  ( pi  / 
6 ) ) )  =  1 )
802, 11, 13, 79mvllmulapd 8915 . . 3  |-  ( T. 
->  ( sin `  (
pi  /  6 ) )  =  ( 1  /  2 ) )
8180mptru 1382 . 2  |-  ( sin `  ( pi  /  6
) )  =  ( 1  /  2 )
82 3re 9110 . . . . . . . 8  |-  3  e.  RR
83 3pos 9130 . . . . . . . 8  |-  0  <  3
8482, 83sqrtpclii 11441 . . . . . . 7  |-  ( sqr `  3 )  e.  RR
8584recni 8084 . . . . . 6  |-  ( sqr `  3 )  e.  CC
8685, 1, 12sqdivapi 10768 . . . . 5  |-  ( ( ( sqr `  3
)  /  2 ) ^ 2 )  =  ( ( ( sqr `  3 ) ^
2 )  /  (
2 ^ 2 ) )
8763, 82, 83ltleii 8175 . . . . . . 7  |-  0  <_  3
8882sqsqrti 11435 . . . . . . 7  |-  ( 0  <_  3  ->  (
( sqr `  3
) ^ 2 )  =  3 )
8987, 88ax-mp 5 . . . . . 6  |-  ( ( sqr `  3 ) ^ 2 )  =  3
90 sq2 10780 . . . . . 6  |-  ( 2 ^ 2 )  =  4
9189, 90oveq12i 5956 . . . . 5  |-  ( ( ( sqr `  3
) ^ 2 )  /  ( 2 ^ 2 ) )  =  ( 3  /  4
)
9286, 91eqtri 2226 . . . 4  |-  ( ( ( sqr `  3
)  /  2 ) ^ 2 )  =  ( 3  /  4
)
9392fveq2i 5579 . . 3  |-  ( sqr `  ( ( ( sqr `  3 )  / 
2 ) ^ 2 ) )  =  ( sqr `  ( 3  /  4 ) )
9482sqrtge0i 11436 . . . . . 6  |-  ( 0  <_  3  ->  0  <_  ( sqr `  3
) )
9587, 94ax-mp 5 . . . . 5  |-  0  <_  ( sqr `  3
)
9684, 55divge0i 8984 . . . . 5  |-  ( ( 0  <_  ( sqr `  3 )  /\  0  <  2 )  ->  0  <_  ( ( sqr `  3
)  /  2 ) )
9795, 56, 96mp2an 426 . . . 4  |-  0  <_  ( ( sqr `  3
)  /  2 )
9884, 55, 12redivclapi 8852 . . . . 5  |-  ( ( sqr `  3 )  /  2 )  e.  RR
9998sqrtsqi 11434 . . . 4  |-  ( 0  <_  ( ( sqr `  3 )  / 
2 )  ->  ( sqr `  ( ( ( sqr `  3 )  /  2 ) ^
2 ) )  =  ( ( sqr `  3
)  /  2 ) )
10097, 99ax-mp 5 . . 3  |-  ( sqr `  ( ( ( sqr `  3 )  / 
2 ) ^ 2 ) )  =  ( ( sqr `  3
)  /  2 )
101 4cn 9114 . . . . . . . 8  |-  4  e.  CC
102 4ap0 9135 . . . . . . . 8  |-  4 #  0
103101, 102dividapi 8818 . . . . . . 7  |-  ( 4  /  4 )  =  1
104103oveq1i 5954 . . . . . 6  |-  ( ( 4  /  4 )  -  ( 1  / 
4 ) )  =  ( 1  -  (
1  /  4 ) )
105101, 102pm3.2i 272 . . . . . . . 8  |-  ( 4  e.  CC  /\  4 #  0 )
106 divsubdirap 8781 . . . . . . . 8  |-  ( ( 4  e.  CC  /\  1  e.  CC  /\  (
4  e.  CC  /\  4 #  0 ) )  -> 
( ( 4  -  1 )  /  4
)  =  ( ( 4  /  4 )  -  ( 1  / 
4 ) ) )
107101, 28, 105, 106mp3an 1350 . . . . . . 7  |-  ( ( 4  -  1 )  /  4 )  =  ( ( 4  / 
4 )  -  (
1  /  4 ) )
108 4m1e3 9157 . . . . . . . 8  |-  ( 4  -  1 )  =  3
109108oveq1i 5954 . . . . . . 7  |-  ( ( 4  -  1 )  /  4 )  =  ( 3  /  4
)
110107, 109eqtr3i 2228 . . . . . 6  |-  ( ( 4  /  4 )  -  ( 1  / 
4 ) )  =  ( 3  /  4
)
111101, 102recclapi 8815 . . . . . . 7  |-  ( 1  /  4 )  e.  CC
11216sqcli 10765 . . . . . . 7  |-  ( ( cos `  ( pi 
/  6 ) ) ^ 2 )  e.  CC
11381oveq1i 5954 . . . . . . . . . 10  |-  ( ( sin `  ( pi 
/  6 ) ) ^ 2 )  =  ( ( 1  / 
2 ) ^ 2 )
114 2z 9400 . . . . . . . . . . 11  |-  2  e.  ZZ
115 exprecap 10725 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  2 #  0  /\  2  e.  ZZ )  ->  (
( 1  /  2
) ^ 2 )  =  ( 1  / 
( 2 ^ 2 ) ) )
1161, 12, 114, 115mp3an 1350 . . . . . . . . . 10  |-  ( ( 1  /  2 ) ^ 2 )  =  ( 1  /  (
2 ^ 2 ) )
11790oveq2i 5955 . . . . . . . . . 10  |-  ( 1  /  ( 2 ^ 2 ) )  =  ( 1  /  4
)
118113, 116, 1173eqtri 2230 . . . . . . . . 9  |-  ( ( sin `  ( pi 
/  6 ) ) ^ 2 )  =  ( 1  /  4
)
119118oveq1i 5954 . . . . . . . 8  |-  ( ( ( sin `  (
pi  /  6 ) ) ^ 2 )  +  ( ( cos `  ( pi  /  6
) ) ^ 2 ) )  =  ( ( 1  /  4
)  +  ( ( cos `  ( pi 
/  6 ) ) ^ 2 ) )
120 sincossq 12059 . . . . . . . . 9  |-  ( ( pi  /  6 )  e.  CC  ->  (
( ( sin `  (
pi  /  6 ) ) ^ 2 )  +  ( ( cos `  ( pi  /  6
) ) ^ 2 ) )  =  1 )
1218, 120ax-mp 5 . . . . . . . 8  |-  ( ( ( sin `  (
pi  /  6 ) ) ^ 2 )  +  ( ( cos `  ( pi  /  6
) ) ^ 2 ) )  =  1
122119, 121eqtr3i 2228 . . . . . . 7  |-  ( ( 1  /  4 )  +  ( ( cos `  ( pi  /  6
) ) ^ 2 ) )  =  1
12328, 111, 112, 122subaddrii 8361 . . . . . 6  |-  ( 1  -  ( 1  / 
4 ) )  =  ( ( cos `  (
pi  /  6 ) ) ^ 2 )
124104, 110, 1233eqtr3ri 2235 . . . . 5  |-  ( ( cos `  ( pi 
/  6 ) ) ^ 2 )  =  ( 3  /  4
)
125124fveq2i 5579 . . . 4  |-  ( sqr `  ( ( cos `  (
pi  /  6 ) ) ^ 2 ) )  =  ( sqr `  ( 3  /  4
) )
12663, 15, 73ltleii 8175 . . . . 5  |-  0  <_  ( cos `  (
pi  /  6 ) )
12715sqrtsqi 11434 . . . . 5  |-  ( 0  <_  ( cos `  (
pi  /  6 ) )  ->  ( sqr `  ( ( cos `  (
pi  /  6 ) ) ^ 2 ) )  =  ( cos `  ( pi  /  6
) ) )
128126, 127ax-mp 5 . . . 4  |-  ( sqr `  ( ( cos `  (
pi  /  6 ) ) ^ 2 ) )  =  ( cos `  ( pi  /  6
) )
129125, 128eqtr3i 2228 . . 3  |-  ( sqr `  ( 3  /  4
) )  =  ( cos `  ( pi 
/  6 ) )
13093, 100, 1293eqtr3ri 2235 . 2  |-  ( cos `  ( pi  /  6
) )  =  ( ( sqr `  3
)  /  2 )
13181, 130pm3.2i 272 1  |-  ( ( sin `  ( pi 
/  6 ) )  =  ( 1  / 
2 )  /\  ( cos `  ( pi  / 
6 ) )  =  ( ( sqr `  3
)  /  2 ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373   T. wtru 1374    e. wcel 2176   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   CCcc 7923   RRcr 7924   0cc0 7925   1c1 7926    + caddc 7928    x. cmul 7930   RR*cxr 8106    < clt 8107    <_ cle 8108    - cmin 8243   # cap 8654    / cdiv 8745   2c2 9087   3c3 9088   4c4 9089   6c6 9091   ZZcz 9372   (,)cioo 10010   ^cexp 10683   sqrcsqrt 11307   sincsin 11955   cosccos 11956   picpi 11958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045  ax-pre-suploc 8046  ax-addf 8047  ax-mulf 8048
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-disj 4022  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-of 6158  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-frec 6477  df-1o 6502  df-oadd 6506  df-er 6620  df-map 6737  df-pm 6738  df-en 6828  df-dom 6829  df-fin 6830  df-sup 7086  df-inf 7087  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-7 9100  df-8 9101  df-9 9102  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-xneg 9894  df-xadd 9895  df-ioo 10014  df-ioc 10015  df-ico 10016  df-icc 10017  df-fz 10131  df-fzo 10265  df-seqfrec 10593  df-exp 10684  df-fac 10871  df-bc 10893  df-ihash 10921  df-shft 11126  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-clim 11590  df-sumdc 11665  df-ef 11959  df-sin 11961  df-cos 11962  df-pi 11964  df-rest 13073  df-topgen 13092  df-psmet 14305  df-xmet 14306  df-met 14307  df-bl 14308  df-mopn 14309  df-top 14470  df-topon 14483  df-bases 14515  df-ntr 14568  df-cn 14660  df-cnp 14661  df-tx 14725  df-cncf 15043  df-limced 15128  df-dvap 15129
This theorem is referenced by:  sincos3rdpi  15315  pigt3  15316
  Copyright terms: Public domain W3C validator