ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sincos6thpi Unicode version

Theorem sincos6thpi 15078
Description: The sine and cosine of  pi  /  6. (Contributed by Paul Chapman, 25-Jan-2008.) (Revised by Wolf Lammen, 24-Sep-2020.)
Assertion
Ref Expression
sincos6thpi  |-  ( ( sin `  ( pi 
/  6 ) )  =  ( 1  / 
2 )  /\  ( cos `  ( pi  / 
6 ) )  =  ( ( sqr `  3
)  /  2 ) )

Proof of Theorem sincos6thpi
StepHypRef Expression
1 2cn 9061 . . . . 5  |-  2  e.  CC
21a1i 9 . . . 4  |-  ( T. 
->  2  e.  CC )
3 pire 15022 . . . . . . . 8  |-  pi  e.  RR
4 6re 9071 . . . . . . . 8  |-  6  e.  RR
5 6pos 9091 . . . . . . . . 9  |-  0  <  6
64, 5gt0ap0ii 8655 . . . . . . . 8  |-  6 #  0
73, 4, 6redivclapi 8806 . . . . . . 7  |-  ( pi 
/  6 )  e.  RR
87recni 8038 . . . . . 6  |-  ( pi 
/  6 )  e.  CC
9 sincl 11871 . . . . . 6  |-  ( ( pi  /  6 )  e.  CC  ->  ( sin `  ( pi  / 
6 ) )  e.  CC )
108, 9ax-mp 5 . . . . 5  |-  ( sin `  ( pi  /  6
) )  e.  CC
1110a1i 9 . . . 4  |-  ( T. 
->  ( sin `  (
pi  /  6 ) )  e.  CC )
12 2ap0 9083 . . . . 5  |-  2 #  0
1312a1i 9 . . . 4  |-  ( T. 
->  2 #  0 )
14 recoscl 11886 . . . . . . . . . . . 12  |-  ( ( pi  /  6 )  e.  RR  ->  ( cos `  ( pi  / 
6 ) )  e.  RR )
157, 14ax-mp 5 . . . . . . . . . . 11  |-  ( cos `  ( pi  /  6
) )  e.  RR
1615recni 8038 . . . . . . . . . 10  |-  ( cos `  ( pi  /  6
) )  e.  CC
171, 10, 16mulassi 8035 . . . . . . . . 9  |-  ( ( 2  x.  ( sin `  ( pi  /  6
) ) )  x.  ( cos `  (
pi  /  6 ) ) )  =  ( 2  x.  ( ( sin `  ( pi 
/  6 ) )  x.  ( cos `  (
pi  /  6 ) ) ) )
18 sin2t 11914 . . . . . . . . . 10  |-  ( ( pi  /  6 )  e.  CC  ->  ( sin `  ( 2  x.  ( pi  /  6
) ) )  =  ( 2  x.  (
( sin `  (
pi  /  6 ) )  x.  ( cos `  ( pi  /  6
) ) ) ) )
198, 18ax-mp 5 . . . . . . . . 9  |-  ( sin `  ( 2  x.  (
pi  /  6 ) ) )  =  ( 2  x.  ( ( sin `  ( pi 
/  6 ) )  x.  ( cos `  (
pi  /  6 ) ) ) )
2017, 19eqtr4i 2220 . . . . . . . 8  |-  ( ( 2  x.  ( sin `  ( pi  /  6
) ) )  x.  ( cos `  (
pi  /  6 ) ) )  =  ( sin `  ( 2  x.  ( pi  / 
6 ) ) )
21 3cn 9065 . . . . . . . . . . . 12  |-  3  e.  CC
22 3ap0 9086 . . . . . . . . . . . 12  |-  3 #  0
231, 21, 22divclapi 8781 . . . . . . . . . . 11  |-  ( 2  /  3 )  e.  CC
2421, 22recclapi 8769 . . . . . . . . . . 11  |-  ( 1  /  3 )  e.  CC
25 df-3 9050 . . . . . . . . . . . . 13  |-  3  =  ( 2  +  1 )
2625oveq1i 5932 . . . . . . . . . . . 12  |-  ( 3  /  3 )  =  ( ( 2  +  1 )  /  3
)
2721, 22dividapi 8772 . . . . . . . . . . . 12  |-  ( 3  /  3 )  =  1
28 ax-1cn 7972 . . . . . . . . . . . . 13  |-  1  e.  CC
291, 28, 21, 22divdirapi 8796 . . . . . . . . . . . 12  |-  ( ( 2  +  1 )  /  3 )  =  ( ( 2  / 
3 )  +  ( 1  /  3 ) )
3026, 27, 293eqtr3ri 2226 . . . . . . . . . . 11  |-  ( ( 2  /  3 )  +  ( 1  / 
3 ) )  =  1
31 sincosq1eq 15075 . . . . . . . . . . 11  |-  ( ( ( 2  /  3
)  e.  CC  /\  ( 1  /  3
)  e.  CC  /\  ( ( 2  / 
3 )  +  ( 1  /  3 ) )  =  1 )  ->  ( sin `  (
( 2  /  3
)  x.  ( pi 
/  2 ) ) )  =  ( cos `  ( ( 1  / 
3 )  x.  (
pi  /  2 ) ) ) )
3223, 24, 30, 31mp3an 1348 . . . . . . . . . 10  |-  ( sin `  ( ( 2  / 
3 )  x.  (
pi  /  2 ) ) )  =  ( cos `  ( ( 1  /  3 )  x.  ( pi  / 
2 ) ) )
33 picn 15023 . . . . . . . . . . . . 13  |-  pi  e.  CC
341, 21, 33, 1, 22, 12divmuldivapi 8799 . . . . . . . . . . . 12  |-  ( ( 2  /  3 )  x.  ( pi  / 
2 ) )  =  ( ( 2  x.  pi )  /  (
3  x.  2 ) )
35 3t2e6 9147 . . . . . . . . . . . . 13  |-  ( 3  x.  2 )  =  6
3635oveq2i 5933 . . . . . . . . . . . 12  |-  ( ( 2  x.  pi )  /  ( 3  x.  2 ) )  =  ( ( 2  x.  pi )  /  6
)
37 6cn 9072 . . . . . . . . . . . . 13  |-  6  e.  CC
381, 33, 37, 6divassapi 8795 . . . . . . . . . . . 12  |-  ( ( 2  x.  pi )  /  6 )  =  ( 2  x.  (
pi  /  6 ) )
3934, 36, 383eqtri 2221 . . . . . . . . . . 11  |-  ( ( 2  /  3 )  x.  ( pi  / 
2 ) )  =  ( 2  x.  (
pi  /  6 ) )
4039fveq2i 5561 . . . . . . . . . 10  |-  ( sin `  ( ( 2  / 
3 )  x.  (
pi  /  2 ) ) )  =  ( sin `  ( 2  x.  ( pi  / 
6 ) ) )
4132, 40eqtr3i 2219 . . . . . . . . 9  |-  ( cos `  ( ( 1  / 
3 )  x.  (
pi  /  2 ) ) )  =  ( sin `  ( 2  x.  ( pi  / 
6 ) ) )
4228, 21, 33, 1, 22, 12divmuldivapi 8799 . . . . . . . . . . 11  |-  ( ( 1  /  3 )  x.  ( pi  / 
2 ) )  =  ( ( 1  x.  pi )  /  (
3  x.  2 ) )
4333mullidi 8029 . . . . . . . . . . . 12  |-  ( 1  x.  pi )  =  pi
4443, 35oveq12i 5934 . . . . . . . . . . 11  |-  ( ( 1  x.  pi )  /  ( 3  x.  2 ) )  =  ( pi  /  6
)
4542, 44eqtri 2217 . . . . . . . . . 10  |-  ( ( 1  /  3 )  x.  ( pi  / 
2 ) )  =  ( pi  /  6
)
4645fveq2i 5561 . . . . . . . . 9  |-  ( cos `  ( ( 1  / 
3 )  x.  (
pi  /  2 ) ) )  =  ( cos `  ( pi 
/  6 ) )
4741, 46eqtr3i 2219 . . . . . . . 8  |-  ( sin `  ( 2  x.  (
pi  /  6 ) ) )  =  ( cos `  ( pi 
/  6 ) )
4820, 47eqtri 2217 . . . . . . 7  |-  ( ( 2  x.  ( sin `  ( pi  /  6
) ) )  x.  ( cos `  (
pi  /  6 ) ) )  =  ( cos `  ( pi 
/  6 ) )
4916mullidi 8029 . . . . . . 7  |-  ( 1  x.  ( cos `  (
pi  /  6 ) ) )  =  ( cos `  ( pi 
/  6 ) )
5048, 49eqtr4i 2220 . . . . . 6  |-  ( ( 2  x.  ( sin `  ( pi  /  6
) ) )  x.  ( cos `  (
pi  /  6 ) ) )  =  ( 1  x.  ( cos `  ( pi  /  6
) ) )
511, 10mulcli 8031 . . . . . . 7  |-  ( 2  x.  ( sin `  (
pi  /  6 ) ) )  e.  CC
52 pipos 15024 . . . . . . . . . . . . 13  |-  0  <  pi
533, 4, 52, 5divgt0ii 8946 . . . . . . . . . . . 12  |-  0  <  ( pi  /  6
)
54 2lt6 9173 . . . . . . . . . . . . 13  |-  2  <  6
55 2re 9060 . . . . . . . . . . . . . . 15  |-  2  e.  RR
56 2pos 9081 . . . . . . . . . . . . . . 15  |-  0  <  2
5755, 56pm3.2i 272 . . . . . . . . . . . . . 14  |-  ( 2  e.  RR  /\  0  <  2 )
584, 5pm3.2i 272 . . . . . . . . . . . . . 14  |-  ( 6  e.  RR  /\  0  <  6 )
593, 52pm3.2i 272 . . . . . . . . . . . . . 14  |-  ( pi  e.  RR  /\  0  <  pi )
60 ltdiv2 8914 . . . . . . . . . . . . . 14  |-  ( ( ( 2  e.  RR  /\  0  <  2 )  /\  ( 6  e.  RR  /\  0  <  6 )  /\  (
pi  e.  RR  /\  0  <  pi ) )  ->  ( 2  <  6  <->  ( pi  / 
6 )  <  (
pi  /  2 ) ) )
6157, 58, 59, 60mp3an 1348 . . . . . . . . . . . . 13  |-  ( 2  <  6  <->  ( pi  /  6 )  <  (
pi  /  2 ) )
6254, 61mpbi 145 . . . . . . . . . . . 12  |-  ( pi 
/  6 )  < 
( pi  /  2
)
63 0re 8026 . . . . . . . . . . . . 13  |-  0  e.  RR
64 halfpire 15028 . . . . . . . . . . . . 13  |-  ( pi 
/  2 )  e.  RR
65 rexr 8072 . . . . . . . . . . . . . 14  |-  ( 0  e.  RR  ->  0  e.  RR* )
66 rexr 8072 . . . . . . . . . . . . . 14  |-  ( ( pi  /  2 )  e.  RR  ->  (
pi  /  2 )  e.  RR* )
67 elioo2 9996 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR*  /\  (
pi  /  2 )  e.  RR* )  ->  (
( pi  /  6
)  e.  ( 0 (,) ( pi  / 
2 ) )  <->  ( (
pi  /  6 )  e.  RR  /\  0  <  ( pi  /  6
)  /\  ( pi  /  6 )  <  (
pi  /  2 ) ) ) )
6865, 66, 67syl2an 289 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  ( pi  /  2
)  e.  RR )  ->  ( ( pi 
/  6 )  e.  ( 0 (,) (
pi  /  2 ) )  <->  ( ( pi 
/  6 )  e.  RR  /\  0  < 
( pi  /  6
)  /\  ( pi  /  6 )  <  (
pi  /  2 ) ) ) )
6963, 64, 68mp2an 426 . . . . . . . . . . . 12  |-  ( ( pi  /  6 )  e.  ( 0 (,) ( pi  /  2
) )  <->  ( (
pi  /  6 )  e.  RR  /\  0  <  ( pi  /  6
)  /\  ( pi  /  6 )  <  (
pi  /  2 ) ) )
707, 53, 62, 69mpbir3an 1181 . . . . . . . . . . 11  |-  ( pi 
/  6 )  e.  ( 0 (,) (
pi  /  2 ) )
71 sincosq1sgn 15062 . . . . . . . . . . 11  |-  ( ( pi  /  6 )  e.  ( 0 (,) ( pi  /  2
) )  ->  (
0  <  ( sin `  ( pi  /  6
) )  /\  0  <  ( cos `  (
pi  /  6 ) ) ) )
7270, 71ax-mp 5 . . . . . . . . . 10  |-  ( 0  <  ( sin `  (
pi  /  6 ) )  /\  0  < 
( cos `  (
pi  /  6 ) ) )
7372simpri 113 . . . . . . . . 9  |-  0  <  ( cos `  (
pi  /  6 ) )
7415, 73gt0ap0ii 8655 . . . . . . . 8  |-  ( cos `  ( pi  /  6
) ) #  0
7516, 74pm3.2i 272 . . . . . . 7  |-  ( ( cos `  ( pi 
/  6 ) )  e.  CC  /\  ( cos `  ( pi  / 
6 ) ) #  0 )
76 mulcanap2 8693 . . . . . . 7  |-  ( ( ( 2  x.  ( sin `  ( pi  / 
6 ) ) )  e.  CC  /\  1  e.  CC  /\  ( ( cos `  ( pi 
/  6 ) )  e.  CC  /\  ( cos `  ( pi  / 
6 ) ) #  0 ) )  ->  (
( ( 2  x.  ( sin `  (
pi  /  6 ) ) )  x.  ( cos `  ( pi  / 
6 ) ) )  =  ( 1  x.  ( cos `  (
pi  /  6 ) ) )  <->  ( 2  x.  ( sin `  (
pi  /  6 ) ) )  =  1 ) )
7751, 28, 75, 76mp3an 1348 . . . . . 6  |-  ( ( ( 2  x.  ( sin `  ( pi  / 
6 ) ) )  x.  ( cos `  (
pi  /  6 ) ) )  =  ( 1  x.  ( cos `  ( pi  /  6
) ) )  <->  ( 2  x.  ( sin `  (
pi  /  6 ) ) )  =  1 )
7850, 77mpbi 145 . . . . 5  |-  ( 2  x.  ( sin `  (
pi  /  6 ) ) )  =  1
7978a1i 9 . . . 4  |-  ( T. 
->  ( 2  x.  ( sin `  ( pi  / 
6 ) ) )  =  1 )
802, 11, 13, 79mvllmulapd 8869 . . 3  |-  ( T. 
->  ( sin `  (
pi  /  6 ) )  =  ( 1  /  2 ) )
8180mptru 1373 . 2  |-  ( sin `  ( pi  /  6
) )  =  ( 1  /  2 )
82 3re 9064 . . . . . . . 8  |-  3  e.  RR
83 3pos 9084 . . . . . . . 8  |-  0  <  3
8482, 83sqrtpclii 11295 . . . . . . 7  |-  ( sqr `  3 )  e.  RR
8584recni 8038 . . . . . 6  |-  ( sqr `  3 )  e.  CC
8685, 1, 12sqdivapi 10715 . . . . 5  |-  ( ( ( sqr `  3
)  /  2 ) ^ 2 )  =  ( ( ( sqr `  3 ) ^
2 )  /  (
2 ^ 2 ) )
8763, 82, 83ltleii 8129 . . . . . . 7  |-  0  <_  3
8882sqsqrti 11289 . . . . . . 7  |-  ( 0  <_  3  ->  (
( sqr `  3
) ^ 2 )  =  3 )
8987, 88ax-mp 5 . . . . . 6  |-  ( ( sqr `  3 ) ^ 2 )  =  3
90 sq2 10727 . . . . . 6  |-  ( 2 ^ 2 )  =  4
9189, 90oveq12i 5934 . . . . 5  |-  ( ( ( sqr `  3
) ^ 2 )  /  ( 2 ^ 2 ) )  =  ( 3  /  4
)
9286, 91eqtri 2217 . . . 4  |-  ( ( ( sqr `  3
)  /  2 ) ^ 2 )  =  ( 3  /  4
)
9392fveq2i 5561 . . 3  |-  ( sqr `  ( ( ( sqr `  3 )  / 
2 ) ^ 2 ) )  =  ( sqr `  ( 3  /  4 ) )
9482sqrtge0i 11290 . . . . . 6  |-  ( 0  <_  3  ->  0  <_  ( sqr `  3
) )
9587, 94ax-mp 5 . . . . 5  |-  0  <_  ( sqr `  3
)
9684, 55divge0i 8938 . . . . 5  |-  ( ( 0  <_  ( sqr `  3 )  /\  0  <  2 )  ->  0  <_  ( ( sqr `  3
)  /  2 ) )
9795, 56, 96mp2an 426 . . . 4  |-  0  <_  ( ( sqr `  3
)  /  2 )
9884, 55, 12redivclapi 8806 . . . . 5  |-  ( ( sqr `  3 )  /  2 )  e.  RR
9998sqrtsqi 11288 . . . 4  |-  ( 0  <_  ( ( sqr `  3 )  / 
2 )  ->  ( sqr `  ( ( ( sqr `  3 )  /  2 ) ^
2 ) )  =  ( ( sqr `  3
)  /  2 ) )
10097, 99ax-mp 5 . . 3  |-  ( sqr `  ( ( ( sqr `  3 )  / 
2 ) ^ 2 ) )  =  ( ( sqr `  3
)  /  2 )
101 4cn 9068 . . . . . . . 8  |-  4  e.  CC
102 4ap0 9089 . . . . . . . 8  |-  4 #  0
103101, 102dividapi 8772 . . . . . . 7  |-  ( 4  /  4 )  =  1
104103oveq1i 5932 . . . . . 6  |-  ( ( 4  /  4 )  -  ( 1  / 
4 ) )  =  ( 1  -  (
1  /  4 ) )
105101, 102pm3.2i 272 . . . . . . . 8  |-  ( 4  e.  CC  /\  4 #  0 )
106 divsubdirap 8735 . . . . . . . 8  |-  ( ( 4  e.  CC  /\  1  e.  CC  /\  (
4  e.  CC  /\  4 #  0 ) )  -> 
( ( 4  -  1 )  /  4
)  =  ( ( 4  /  4 )  -  ( 1  / 
4 ) ) )
107101, 28, 105, 106mp3an 1348 . . . . . . 7  |-  ( ( 4  -  1 )  /  4 )  =  ( ( 4  / 
4 )  -  (
1  /  4 ) )
108 4m1e3 9111 . . . . . . . 8  |-  ( 4  -  1 )  =  3
109108oveq1i 5932 . . . . . . 7  |-  ( ( 4  -  1 )  /  4 )  =  ( 3  /  4
)
110107, 109eqtr3i 2219 . . . . . 6  |-  ( ( 4  /  4 )  -  ( 1  / 
4 ) )  =  ( 3  /  4
)
111101, 102recclapi 8769 . . . . . . 7  |-  ( 1  /  4 )  e.  CC
11216sqcli 10712 . . . . . . 7  |-  ( ( cos `  ( pi 
/  6 ) ) ^ 2 )  e.  CC
11381oveq1i 5932 . . . . . . . . . 10  |-  ( ( sin `  ( pi 
/  6 ) ) ^ 2 )  =  ( ( 1  / 
2 ) ^ 2 )
114 2z 9354 . . . . . . . . . . 11  |-  2  e.  ZZ
115 exprecap 10672 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  2 #  0  /\  2  e.  ZZ )  ->  (
( 1  /  2
) ^ 2 )  =  ( 1  / 
( 2 ^ 2 ) ) )
1161, 12, 114, 115mp3an 1348 . . . . . . . . . 10  |-  ( ( 1  /  2 ) ^ 2 )  =  ( 1  /  (
2 ^ 2 ) )
11790oveq2i 5933 . . . . . . . . . 10  |-  ( 1  /  ( 2 ^ 2 ) )  =  ( 1  /  4
)
118113, 116, 1173eqtri 2221 . . . . . . . . 9  |-  ( ( sin `  ( pi 
/  6 ) ) ^ 2 )  =  ( 1  /  4
)
119118oveq1i 5932 . . . . . . . 8  |-  ( ( ( sin `  (
pi  /  6 ) ) ^ 2 )  +  ( ( cos `  ( pi  /  6
) ) ^ 2 ) )  =  ( ( 1  /  4
)  +  ( ( cos `  ( pi 
/  6 ) ) ^ 2 ) )
120 sincossq 11913 . . . . . . . . 9  |-  ( ( pi  /  6 )  e.  CC  ->  (
( ( sin `  (
pi  /  6 ) ) ^ 2 )  +  ( ( cos `  ( pi  /  6
) ) ^ 2 ) )  =  1 )
1218, 120ax-mp 5 . . . . . . . 8  |-  ( ( ( sin `  (
pi  /  6 ) ) ^ 2 )  +  ( ( cos `  ( pi  /  6
) ) ^ 2 ) )  =  1
122119, 121eqtr3i 2219 . . . . . . 7  |-  ( ( 1  /  4 )  +  ( ( cos `  ( pi  /  6
) ) ^ 2 ) )  =  1
12328, 111, 112, 122subaddrii 8315 . . . . . 6  |-  ( 1  -  ( 1  / 
4 ) )  =  ( ( cos `  (
pi  /  6 ) ) ^ 2 )
124104, 110, 1233eqtr3ri 2226 . . . . 5  |-  ( ( cos `  ( pi 
/  6 ) ) ^ 2 )  =  ( 3  /  4
)
125124fveq2i 5561 . . . 4  |-  ( sqr `  ( ( cos `  (
pi  /  6 ) ) ^ 2 ) )  =  ( sqr `  ( 3  /  4
) )
12663, 15, 73ltleii 8129 . . . . 5  |-  0  <_  ( cos `  (
pi  /  6 ) )
12715sqrtsqi 11288 . . . . 5  |-  ( 0  <_  ( cos `  (
pi  /  6 ) )  ->  ( sqr `  ( ( cos `  (
pi  /  6 ) ) ^ 2 ) )  =  ( cos `  ( pi  /  6
) ) )
128126, 127ax-mp 5 . . . 4  |-  ( sqr `  ( ( cos `  (
pi  /  6 ) ) ^ 2 ) )  =  ( cos `  ( pi  /  6
) )
129125, 128eqtr3i 2219 . . 3  |-  ( sqr `  ( 3  /  4
) )  =  ( cos `  ( pi 
/  6 ) )
13093, 100, 1293eqtr3ri 2226 . 2  |-  ( cos `  ( pi  /  6
) )  =  ( ( sqr `  3
)  /  2 )
13181, 130pm3.2i 272 1  |-  ( ( sin `  ( pi 
/  6 ) )  =  ( 1  / 
2 )  /\  ( cos `  ( pi  / 
6 ) )  =  ( ( sqr `  3
)  /  2 ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364   T. wtru 1365    e. wcel 2167   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   CCcc 7877   RRcr 7878   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884   RR*cxr 8060    < clt 8061    <_ cle 8062    - cmin 8197   # cap 8608    / cdiv 8699   2c2 9041   3c3 9042   4c4 9043   6c6 9045   ZZcz 9326   (,)cioo 9963   ^cexp 10630   sqrcsqrt 11161   sincsin 11809   cosccos 11810   picpi 11812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999  ax-pre-suploc 8000  ax-addf 8001  ax-mulf 8002
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-disj 4011  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-of 6135  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-map 6709  df-pm 6710  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-9 9056  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-xneg 9847  df-xadd 9848  df-ioo 9967  df-ioc 9968  df-ico 9969  df-icc 9970  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-fac 10818  df-bc 10840  df-ihash 10868  df-shft 10980  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519  df-ef 11813  df-sin 11815  df-cos 11816  df-pi 11818  df-rest 12912  df-topgen 12931  df-psmet 14099  df-xmet 14100  df-met 14101  df-bl 14102  df-mopn 14103  df-top 14234  df-topon 14247  df-bases 14279  df-ntr 14332  df-cn 14424  df-cnp 14425  df-tx 14489  df-cncf 14807  df-limced 14892  df-dvap 14893
This theorem is referenced by:  sincos3rdpi  15079  pigt3  15080
  Copyright terms: Public domain W3C validator