ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decbin0 Unicode version

Theorem decbin0 9553
Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypothesis
Ref Expression
decbin.1  |-  A  e. 
NN0
Assertion
Ref Expression
decbin0  |-  ( 4  x.  A )  =  ( 2  x.  (
2  x.  A ) )

Proof of Theorem decbin0
StepHypRef Expression
1 2t2e4 9103 . . 3  |-  ( 2  x.  2 )  =  4
21oveq1i 5906 . 2  |-  ( ( 2  x.  2 )  x.  A )  =  ( 4  x.  A
)
3 2cn 9020 . . 3  |-  2  e.  CC
4 decbin.1 . . . 4  |-  A  e. 
NN0
54nn0cni 9218 . . 3  |-  A  e.  CC
63, 3, 5mulassi 7996 . 2  |-  ( ( 2  x.  2 )  x.  A )  =  ( 2  x.  (
2  x.  A ) )
72, 6eqtr3i 2212 1  |-  ( 4  x.  A )  =  ( 2  x.  (
2  x.  A ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2160  (class class class)co 5896    x. cmul 7846   2c2 9000   4c4 9002   NN0cn0 9206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171  ax-sep 4136  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-1rid 7948  ax-rnegex 7950  ax-cnre 7952
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-iota 5196  df-fv 5243  df-ov 5899  df-inn 8950  df-2 9008  df-3 9009  df-4 9010  df-n0 9207
This theorem is referenced by:  decbin2  9554
  Copyright terms: Public domain W3C validator