ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decbin0 Unicode version

Theorem decbin0 9525
Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypothesis
Ref Expression
decbin.1  |-  A  e. 
NN0
Assertion
Ref Expression
decbin0  |-  ( 4  x.  A )  =  ( 2  x.  (
2  x.  A ) )

Proof of Theorem decbin0
StepHypRef Expression
1 2t2e4 9075 . . 3  |-  ( 2  x.  2 )  =  4
21oveq1i 5887 . 2  |-  ( ( 2  x.  2 )  x.  A )  =  ( 4  x.  A
)
3 2cn 8992 . . 3  |-  2  e.  CC
4 decbin.1 . . . 4  |-  A  e. 
NN0
54nn0cni 9190 . . 3  |-  A  e.  CC
63, 3, 5mulassi 7968 . 2  |-  ( ( 2  x.  2 )  x.  A )  =  ( 2  x.  (
2  x.  A ) )
72, 6eqtr3i 2200 1  |-  ( 4  x.  A )  =  ( 2  x.  (
2  x.  A ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1353    e. wcel 2148  (class class class)co 5877    x. cmul 7818   2c2 8972   4c4 8974   NN0cn0 9178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-sep 4123  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-1rid 7920  ax-rnegex 7922  ax-cnre 7924
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-iota 5180  df-fv 5226  df-ov 5880  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179
This theorem is referenced by:  decbin2  9526
  Copyright terms: Public domain W3C validator