ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decbin0 Unicode version

Theorem decbin0 9596
Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypothesis
Ref Expression
decbin.1  |-  A  e. 
NN0
Assertion
Ref Expression
decbin0  |-  ( 4  x.  A )  =  ( 2  x.  (
2  x.  A ) )

Proof of Theorem decbin0
StepHypRef Expression
1 2t2e4 9145 . . 3  |-  ( 2  x.  2 )  =  4
21oveq1i 5932 . 2  |-  ( ( 2  x.  2 )  x.  A )  =  ( 4  x.  A
)
3 2cn 9061 . . 3  |-  2  e.  CC
4 decbin.1 . . . 4  |-  A  e. 
NN0
54nn0cni 9261 . . 3  |-  A  e.  CC
63, 3, 5mulassi 8035 . 2  |-  ( ( 2  x.  2 )  x.  A )  =  ( 2  x.  (
2  x.  A ) )
72, 6eqtr3i 2219 1  |-  ( 4  x.  A )  =  ( 2  x.  (
2  x.  A ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167  (class class class)co 5922    x. cmul 7884   2c2 9041   4c4 9043   NN0cn0 9249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-sep 4151  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-1rid 7986  ax-rnegex 7988  ax-cnre 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-iota 5219  df-fv 5266  df-ov 5925  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250
This theorem is referenced by:  decbin2  9597
  Copyright terms: Public domain W3C validator