![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 8th4div3 | Unicode version |
Description: An eighth of four thirds is a sixth. (Contributed by Paul Chapman, 24-Nov-2007.) |
Ref | Expression |
---|---|
8th4div3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7921 |
. . . 4
![]() ![]() ![]() ![]() | |
2 | 8re 9021 |
. . . . 5
![]() ![]() ![]() ![]() | |
3 | 2 | recni 7986 |
. . . 4
![]() ![]() ![]() ![]() |
4 | 4cn 9014 |
. . . 4
![]() ![]() ![]() ![]() | |
5 | 3cn 9011 |
. . . 4
![]() ![]() ![]() ![]() | |
6 | 8pos 9039 |
. . . . 5
![]() ![]() ![]() ![]() | |
7 | 2, 6 | gt0ap0ii 8602 |
. . . 4
![]() ![]() ![]() |
8 | 3re 9010 |
. . . . 5
![]() ![]() ![]() ![]() | |
9 | 3pos 9030 |
. . . . 5
![]() ![]() ![]() ![]() | |
10 | 8, 9 | gt0ap0ii 8602 |
. . . 4
![]() ![]() ![]() |
11 | 1, 3, 4, 5, 7, 10 | divmuldivapi 8746 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 1, 4 | mulcomi 7980 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 2cn 9007 |
. . . . . . . 8
![]() ![]() ![]() ![]() | |
14 | 4, 13, 5 | mul32i 8121 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 4t2e8 9094 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
16 | 15 | oveq1i 5900 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 14, 16 | eqtr3i 2211 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 4, 5, 13 | mulassi 7983 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | 17, 18 | eqtr3i 2211 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | 3t2e6 9092 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
21 | 20 | oveq2i 5901 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | 19, 21 | eqtri 2209 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | 12, 22 | oveq12i 5902 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | 11, 23 | eqtri 2209 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | 6re 9017 |
. . . 4
![]() ![]() ![]() ![]() | |
26 | 25 | recni 7986 |
. . 3
![]() ![]() ![]() ![]() |
27 | 6pos 9037 |
. . . 4
![]() ![]() ![]() ![]() | |
28 | 25, 27 | gt0ap0ii 8602 |
. . 3
![]() ![]() ![]() |
29 | 4re 9013 |
. . . 4
![]() ![]() ![]() ![]() | |
30 | 4pos 9033 |
. . . 4
![]() ![]() ![]() ![]() | |
31 | 29, 30 | gt0ap0ii 8602 |
. . 3
![]() ![]() ![]() |
32 | divcanap5 8688 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
33 | 1, 32 | mp3an1 1334 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
34 | 26, 28, 4, 31, 33 | mp4an 427 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
35 | 24, 34 | eqtri 2209 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2161 ax-14 2162 ax-ext 2170 ax-sep 4135 ax-pow 4188 ax-pr 4223 ax-un 4447 ax-setind 4550 ax-cnex 7919 ax-resscn 7920 ax-1cn 7921 ax-1re 7922 ax-icn 7923 ax-addcl 7924 ax-addrcl 7925 ax-mulcl 7926 ax-mulrcl 7927 ax-addcom 7928 ax-mulcom 7929 ax-addass 7930 ax-mulass 7931 ax-distr 7932 ax-i2m1 7933 ax-0lt1 7934 ax-1rid 7935 ax-0id 7936 ax-rnegex 7937 ax-precex 7938 ax-cnre 7939 ax-pre-ltirr 7940 ax-pre-ltwlin 7941 ax-pre-lttrn 7942 ax-pre-apti 7943 ax-pre-ltadd 7944 ax-pre-mulgt0 7945 ax-pre-mulext 7946 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2040 df-mo 2041 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ne 2360 df-nel 2455 df-ral 2472 df-rex 2473 df-reu 2474 df-rmo 2475 df-rab 2476 df-v 2753 df-sbc 2977 df-dif 3145 df-un 3147 df-in 3149 df-ss 3156 df-pw 3591 df-sn 3612 df-pr 3613 df-op 3615 df-uni 3824 df-br 4018 df-opab 4079 df-id 4307 df-po 4310 df-iso 4311 df-xp 4646 df-rel 4647 df-cnv 4648 df-co 4649 df-dm 4650 df-iota 5192 df-fun 5232 df-fv 5238 df-riota 5846 df-ov 5893 df-oprab 5894 df-mpo 5895 df-pnf 8011 df-mnf 8012 df-xr 8013 df-ltxr 8014 df-le 8015 df-sub 8147 df-neg 8148 df-reap 8549 df-ap 8556 df-div 8647 df-2 8995 df-3 8996 df-4 8997 df-5 8998 df-6 8999 df-7 9000 df-8 9001 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |