ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  8th4div3 Unicode version

Theorem 8th4div3 9227
Description: An eighth of four thirds is a sixth. (Contributed by Paul Chapman, 24-Nov-2007.)
Assertion
Ref Expression
8th4div3  |-  ( ( 1  /  8 )  x.  ( 4  / 
3 ) )  =  ( 1  /  6
)

Proof of Theorem 8th4div3
StepHypRef Expression
1 ax-1cn 7989 . . . 4  |-  1  e.  CC
2 8re 9092 . . . . 5  |-  8  e.  RR
32recni 8055 . . . 4  |-  8  e.  CC
4 4cn 9085 . . . 4  |-  4  e.  CC
5 3cn 9082 . . . 4  |-  3  e.  CC
6 8pos 9110 . . . . 5  |-  0  <  8
72, 6gt0ap0ii 8672 . . . 4  |-  8 #  0
8 3re 9081 . . . . 5  |-  3  e.  RR
9 3pos 9101 . . . . 5  |-  0  <  3
108, 9gt0ap0ii 8672 . . . 4  |-  3 #  0
111, 3, 4, 5, 7, 10divmuldivapi 8816 . . 3  |-  ( ( 1  /  8 )  x.  ( 4  / 
3 ) )  =  ( ( 1  x.  4 )  /  (
8  x.  3 ) )
121, 4mulcomi 8049 . . . 4  |-  ( 1  x.  4 )  =  ( 4  x.  1 )
13 2cn 9078 . . . . . . . 8  |-  2  e.  CC
144, 13, 5mul32i 8190 . . . . . . 7  |-  ( ( 4  x.  2 )  x.  3 )  =  ( ( 4  x.  3 )  x.  2 )
15 4t2e8 9166 . . . . . . . 8  |-  ( 4  x.  2 )  =  8
1615oveq1i 5935 . . . . . . 7  |-  ( ( 4  x.  2 )  x.  3 )  =  ( 8  x.  3 )
1714, 16eqtr3i 2219 . . . . . 6  |-  ( ( 4  x.  3 )  x.  2 )  =  ( 8  x.  3 )
184, 5, 13mulassi 8052 . . . . . 6  |-  ( ( 4  x.  3 )  x.  2 )  =  ( 4  x.  (
3  x.  2 ) )
1917, 18eqtr3i 2219 . . . . 5  |-  ( 8  x.  3 )  =  ( 4  x.  (
3  x.  2 ) )
20 3t2e6 9164 . . . . . 6  |-  ( 3  x.  2 )  =  6
2120oveq2i 5936 . . . . 5  |-  ( 4  x.  ( 3  x.  2 ) )  =  ( 4  x.  6 )
2219, 21eqtri 2217 . . . 4  |-  ( 8  x.  3 )  =  ( 4  x.  6 )
2312, 22oveq12i 5937 . . 3  |-  ( ( 1  x.  4 )  /  ( 8  x.  3 ) )  =  ( ( 4  x.  1 )  /  (
4  x.  6 ) )
2411, 23eqtri 2217 . 2  |-  ( ( 1  /  8 )  x.  ( 4  / 
3 ) )  =  ( ( 4  x.  1 )  /  (
4  x.  6 ) )
25 6re 9088 . . . 4  |-  6  e.  RR
2625recni 8055 . . 3  |-  6  e.  CC
27 6pos 9108 . . . 4  |-  0  <  6
2825, 27gt0ap0ii 8672 . . 3  |-  6 #  0
29 4re 9084 . . . 4  |-  4  e.  RR
30 4pos 9104 . . . 4  |-  0  <  4
3129, 30gt0ap0ii 8672 . . 3  |-  4 #  0
32 divcanap5 8758 . . . 4  |-  ( ( 1  e.  CC  /\  ( 6  e.  CC  /\  6 #  0 )  /\  ( 4  e.  CC  /\  4 #  0 ) )  ->  ( ( 4  x.  1 )  / 
( 4  x.  6 ) )  =  ( 1  /  6 ) )
331, 32mp3an1 1335 . . 3  |-  ( ( ( 6  e.  CC  /\  6 #  0 )  /\  ( 4  e.  CC  /\  4 #  0 ) )  ->  ( ( 4  x.  1 )  / 
( 4  x.  6 ) )  =  ( 1  /  6 ) )
3426, 28, 4, 31, 33mp4an 427 . 2  |-  ( ( 4  x.  1 )  /  ( 4  x.  6 ) )  =  ( 1  /  6
)
3524, 34eqtri 2217 1  |-  ( ( 1  /  8 )  x.  ( 4  / 
3 ) )  =  ( 1  /  6
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364    e. wcel 2167   class class class wbr 4034  (class class class)co 5925   CCcc 7894   0cc0 7896   1c1 7897    x. cmul 7901   # cap 8625    / cdiv 8716   2c2 9058   3c3 9059   4c4 9060   6c6 9062   8c8 9064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator