| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8th4div3 | Unicode version | ||
| Description: An eighth of four thirds is a sixth. (Contributed by Paul Chapman, 24-Nov-2007.) |
| Ref | Expression |
|---|---|
| 8th4div3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 8053 |
. . . 4
| |
| 2 | 8re 9156 |
. . . . 5
| |
| 3 | 2 | recni 8119 |
. . . 4
|
| 4 | 4cn 9149 |
. . . 4
| |
| 5 | 3cn 9146 |
. . . 4
| |
| 6 | 8pos 9174 |
. . . . 5
| |
| 7 | 2, 6 | gt0ap0ii 8736 |
. . . 4
|
| 8 | 3re 9145 |
. . . . 5
| |
| 9 | 3pos 9165 |
. . . . 5
| |
| 10 | 8, 9 | gt0ap0ii 8736 |
. . . 4
|
| 11 | 1, 3, 4, 5, 7, 10 | divmuldivapi 8880 |
. . 3
|
| 12 | 1, 4 | mulcomi 8113 |
. . . 4
|
| 13 | 2cn 9142 |
. . . . . . . 8
| |
| 14 | 4, 13, 5 | mul32i 8254 |
. . . . . . 7
|
| 15 | 4t2e8 9230 |
. . . . . . . 8
| |
| 16 | 15 | oveq1i 5977 |
. . . . . . 7
|
| 17 | 14, 16 | eqtr3i 2230 |
. . . . . 6
|
| 18 | 4, 5, 13 | mulassi 8116 |
. . . . . 6
|
| 19 | 17, 18 | eqtr3i 2230 |
. . . . 5
|
| 20 | 3t2e6 9228 |
. . . . . 6
| |
| 21 | 20 | oveq2i 5978 |
. . . . 5
|
| 22 | 19, 21 | eqtri 2228 |
. . . 4
|
| 23 | 12, 22 | oveq12i 5979 |
. . 3
|
| 24 | 11, 23 | eqtri 2228 |
. 2
|
| 25 | 6re 9152 |
. . . 4
| |
| 26 | 25 | recni 8119 |
. . 3
|
| 27 | 6pos 9172 |
. . . 4
| |
| 28 | 25, 27 | gt0ap0ii 8736 |
. . 3
|
| 29 | 4re 9148 |
. . . 4
| |
| 30 | 4pos 9168 |
. . . 4
| |
| 31 | 29, 30 | gt0ap0ii 8736 |
. . 3
|
| 32 | divcanap5 8822 |
. . . 4
| |
| 33 | 1, 32 | mp3an1 1337 |
. . 3
|
| 34 | 26, 28, 4, 31, 33 | mp4an 427 |
. 2
|
| 35 | 24, 34 | eqtri 2228 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 df-7 9135 df-8 9136 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |