ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  8th4div3 Unicode version

Theorem 8th4div3 8843
Description: An eighth of four thirds is a sixth. (Contributed by Paul Chapman, 24-Nov-2007.)
Assertion
Ref Expression
8th4div3  |-  ( ( 1  /  8 )  x.  ( 4  / 
3 ) )  =  ( 1  /  6
)

Proof of Theorem 8th4div3
StepHypRef Expression
1 ax-1cn 7638 . . . 4  |-  1  e.  CC
2 8re 8715 . . . . 5  |-  8  e.  RR
32recni 7702 . . . 4  |-  8  e.  CC
4 4cn 8708 . . . 4  |-  4  e.  CC
5 3cn 8705 . . . 4  |-  3  e.  CC
6 8pos 8733 . . . . 5  |-  0  <  8
72, 6gt0ap0ii 8308 . . . 4  |-  8 #  0
8 3re 8704 . . . . 5  |-  3  e.  RR
9 3pos 8724 . . . . 5  |-  0  <  3
108, 9gt0ap0ii 8308 . . . 4  |-  3 #  0
111, 3, 4, 5, 7, 10divmuldivapi 8445 . . 3  |-  ( ( 1  /  8 )  x.  ( 4  / 
3 ) )  =  ( ( 1  x.  4 )  /  (
8  x.  3 ) )
121, 4mulcomi 7696 . . . 4  |-  ( 1  x.  4 )  =  ( 4  x.  1 )
13 2cn 8701 . . . . . . . 8  |-  2  e.  CC
144, 13, 5mul32i 7832 . . . . . . 7  |-  ( ( 4  x.  2 )  x.  3 )  =  ( ( 4  x.  3 )  x.  2 )
15 4t2e8 8782 . . . . . . . 8  |-  ( 4  x.  2 )  =  8
1615oveq1i 5738 . . . . . . 7  |-  ( ( 4  x.  2 )  x.  3 )  =  ( 8  x.  3 )
1714, 16eqtr3i 2137 . . . . . 6  |-  ( ( 4  x.  3 )  x.  2 )  =  ( 8  x.  3 )
184, 5, 13mulassi 7699 . . . . . 6  |-  ( ( 4  x.  3 )  x.  2 )  =  ( 4  x.  (
3  x.  2 ) )
1917, 18eqtr3i 2137 . . . . 5  |-  ( 8  x.  3 )  =  ( 4  x.  (
3  x.  2 ) )
20 3t2e6 8780 . . . . . 6  |-  ( 3  x.  2 )  =  6
2120oveq2i 5739 . . . . 5  |-  ( 4  x.  ( 3  x.  2 ) )  =  ( 4  x.  6 )
2219, 21eqtri 2135 . . . 4  |-  ( 8  x.  3 )  =  ( 4  x.  6 )
2312, 22oveq12i 5740 . . 3  |-  ( ( 1  x.  4 )  /  ( 8  x.  3 ) )  =  ( ( 4  x.  1 )  /  (
4  x.  6 ) )
2411, 23eqtri 2135 . 2  |-  ( ( 1  /  8 )  x.  ( 4  / 
3 ) )  =  ( ( 4  x.  1 )  /  (
4  x.  6 ) )
25 6re 8711 . . . 4  |-  6  e.  RR
2625recni 7702 . . 3  |-  6  e.  CC
27 6pos 8731 . . . 4  |-  0  <  6
2825, 27gt0ap0ii 8308 . . 3  |-  6 #  0
29 4re 8707 . . . 4  |-  4  e.  RR
30 4pos 8727 . . . 4  |-  0  <  4
3129, 30gt0ap0ii 8308 . . 3  |-  4 #  0
32 divcanap5 8387 . . . 4  |-  ( ( 1  e.  CC  /\  ( 6  e.  CC  /\  6 #  0 )  /\  ( 4  e.  CC  /\  4 #  0 ) )  ->  ( ( 4  x.  1 )  / 
( 4  x.  6 ) )  =  ( 1  /  6 ) )
331, 32mp3an1 1285 . . 3  |-  ( ( ( 6  e.  CC  /\  6 #  0 )  /\  ( 4  e.  CC  /\  4 #  0 ) )  ->  ( ( 4  x.  1 )  / 
( 4  x.  6 ) )  =  ( 1  /  6 ) )
3426, 28, 4, 31, 33mp4an 421 . 2  |-  ( ( 4  x.  1 )  /  ( 4  x.  6 ) )  =  ( 1  /  6
)
3524, 34eqtri 2135 1  |-  ( ( 1  /  8 )  x.  ( 4  / 
3 ) )  =  ( 1  /  6
)
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1314    e. wcel 1463   class class class wbr 3895  (class class class)co 5728   CCcc 7545   0cc0 7547   1c1 7548    x. cmul 7552   # cap 8261    / cdiv 8345   2c2 8681   3c3 8682   4c4 8683   6c6 8685   8c8 8687
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-mulrcl 7644  ax-addcom 7645  ax-mulcom 7646  ax-addass 7647  ax-mulass 7648  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-1rid 7652  ax-0id 7653  ax-rnegex 7654  ax-precex 7655  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-apti 7660  ax-pre-ltadd 7661  ax-pre-mulgt0 7662  ax-pre-mulext 7663
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rmo 2398  df-rab 2399  df-v 2659  df-sbc 2879  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-opab 3950  df-id 4175  df-po 4178  df-iso 4179  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-iota 5046  df-fun 5083  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-reap 8255  df-ap 8262  df-div 8346  df-2 8689  df-3 8690  df-4 8691  df-5 8692  df-6 8693  df-7 8694  df-8 8695
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator