ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sincos4thpi Unicode version

Theorem sincos4thpi 15184
Description: The sine and cosine of  pi  /  4. (Contributed by Paul Chapman, 25-Jan-2008.)
Assertion
Ref Expression
sincos4thpi  |-  ( ( sin `  ( pi 
/  4 ) )  =  ( 1  / 
( sqr `  2
) )  /\  ( cos `  ( pi  / 
4 ) )  =  ( 1  /  ( sqr `  2 ) ) )

Proof of Theorem sincos4thpi
StepHypRef Expression
1 halfcn 9224 . . . . . . . . . 10  |-  ( 1  /  2 )  e.  CC
2 ax-1cn 7991 . . . . . . . . . . 11  |-  1  e.  CC
3 2halves 9239 . . . . . . . . . . 11  |-  ( 1  e.  CC  ->  (
( 1  /  2
)  +  ( 1  /  2 ) )  =  1 )
42, 3ax-mp 5 . . . . . . . . . 10  |-  ( ( 1  /  2 )  +  ( 1  / 
2 ) )  =  1
5 sincosq1eq 15183 . . . . . . . . . 10  |-  ( ( ( 1  /  2
)  e.  CC  /\  ( 1  /  2
)  e.  CC  /\  ( ( 1  / 
2 )  +  ( 1  /  2 ) )  =  1 )  ->  ( sin `  (
( 1  /  2
)  x.  ( pi 
/  2 ) ) )  =  ( cos `  ( ( 1  / 
2 )  x.  (
pi  /  2 ) ) ) )
61, 1, 4, 5mp3an 1348 . . . . . . . . 9  |-  ( sin `  ( ( 1  / 
2 )  x.  (
pi  /  2 ) ) )  =  ( cos `  ( ( 1  /  2 )  x.  ( pi  / 
2 ) ) )
76oveq2i 5936 . . . . . . . 8  |-  ( ( sin `  ( ( 1  /  2 )  x.  ( pi  / 
2 ) ) )  x.  ( sin `  (
( 1  /  2
)  x.  ( pi 
/  2 ) ) ) )  =  ( ( sin `  (
( 1  /  2
)  x.  ( pi 
/  2 ) ) )  x.  ( cos `  ( ( 1  / 
2 )  x.  (
pi  /  2 ) ) ) )
87oveq2i 5936 . . . . . . 7  |-  ( 2  x.  ( ( sin `  ( ( 1  / 
2 )  x.  (
pi  /  2 ) ) )  x.  ( sin `  ( ( 1  /  2 )  x.  ( pi  /  2
) ) ) ) )  =  ( 2  x.  ( ( sin `  ( ( 1  / 
2 )  x.  (
pi  /  2 ) ) )  x.  ( cos `  ( ( 1  /  2 )  x.  ( pi  /  2
) ) ) ) )
9 2cn 9080 . . . . . . . . . . . 12  |-  2  e.  CC
10 pire 15130 . . . . . . . . . . . . 13  |-  pi  e.  RR
1110recni 8057 . . . . . . . . . . . 12  |-  pi  e.  CC
12 2ap0 9102 . . . . . . . . . . . 12  |-  2 #  0
132, 9, 11, 9, 12, 12divmuldivapi 8818 . . . . . . . . . . 11  |-  ( ( 1  /  2 )  x.  ( pi  / 
2 ) )  =  ( ( 1  x.  pi )  /  (
2  x.  2 ) )
1411mullidi 8048 . . . . . . . . . . . 12  |-  ( 1  x.  pi )  =  pi
15 2t2e4 9164 . . . . . . . . . . . 12  |-  ( 2  x.  2 )  =  4
1614, 15oveq12i 5937 . . . . . . . . . . 11  |-  ( ( 1  x.  pi )  /  ( 2  x.  2 ) )  =  ( pi  /  4
)
1713, 16eqtri 2217 . . . . . . . . . 10  |-  ( ( 1  /  2 )  x.  ( pi  / 
2 ) )  =  ( pi  /  4
)
1817fveq2i 5564 . . . . . . . . 9  |-  ( sin `  ( ( 1  / 
2 )  x.  (
pi  /  2 ) ) )  =  ( sin `  ( pi 
/  4 ) )
1918, 18oveq12i 5937 . . . . . . . 8  |-  ( ( sin `  ( ( 1  /  2 )  x.  ( pi  / 
2 ) ) )  x.  ( sin `  (
( 1  /  2
)  x.  ( pi 
/  2 ) ) ) )  =  ( ( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) )
2019oveq2i 5936 . . . . . . 7  |-  ( 2  x.  ( ( sin `  ( ( 1  / 
2 )  x.  (
pi  /  2 ) ) )  x.  ( sin `  ( ( 1  /  2 )  x.  ( pi  /  2
) ) ) ) )  =  ( 2  x.  ( ( sin `  ( pi  /  4
) )  x.  ( sin `  ( pi  / 
4 ) ) ) )
219, 12recidapi 8789 . . . . . . . . . . 11  |-  ( 2  x.  ( 1  / 
2 ) )  =  1
2221oveq1i 5935 . . . . . . . . . 10  |-  ( ( 2  x.  ( 1  /  2 ) )  x.  ( pi  / 
2 ) )  =  ( 1  x.  (
pi  /  2 ) )
23 2re 9079 . . . . . . . . . . . . 13  |-  2  e.  RR
2410, 23, 12redivclapi 8825 . . . . . . . . . . . 12  |-  ( pi 
/  2 )  e.  RR
2524recni 8057 . . . . . . . . . . 11  |-  ( pi 
/  2 )  e.  CC
269, 1, 25mulassi 8054 . . . . . . . . . 10  |-  ( ( 2  x.  ( 1  /  2 ) )  x.  ( pi  / 
2 ) )  =  ( 2  x.  (
( 1  /  2
)  x.  ( pi 
/  2 ) ) )
2725mullidi 8048 . . . . . . . . . 10  |-  ( 1  x.  ( pi  / 
2 ) )  =  ( pi  /  2
)
2822, 26, 273eqtr3i 2225 . . . . . . . . 9  |-  ( 2  x.  ( ( 1  /  2 )  x.  ( pi  /  2
) ) )  =  ( pi  /  2
)
2928fveq2i 5564 . . . . . . . 8  |-  ( sin `  ( 2  x.  (
( 1  /  2
)  x.  ( pi 
/  2 ) ) ) )  =  ( sin `  ( pi 
/  2 ) )
301, 25mulcli 8050 . . . . . . . . 9  |-  ( ( 1  /  2 )  x.  ( pi  / 
2 ) )  e.  CC
31 sin2t 11933 . . . . . . . . 9  |-  ( ( ( 1  /  2
)  x.  ( pi 
/  2 ) )  e.  CC  ->  ( sin `  ( 2  x.  ( ( 1  / 
2 )  x.  (
pi  /  2 ) ) ) )  =  ( 2  x.  (
( sin `  (
( 1  /  2
)  x.  ( pi 
/  2 ) ) )  x.  ( cos `  ( ( 1  / 
2 )  x.  (
pi  /  2 ) ) ) ) ) )
3230, 31ax-mp 5 . . . . . . . 8  |-  ( sin `  ( 2  x.  (
( 1  /  2
)  x.  ( pi 
/  2 ) ) ) )  =  ( 2  x.  ( ( sin `  ( ( 1  /  2 )  x.  ( pi  / 
2 ) ) )  x.  ( cos `  (
( 1  /  2
)  x.  ( pi 
/  2 ) ) ) ) )
33 sinhalfpi 15140 . . . . . . . 8  |-  ( sin `  ( pi  /  2
) )  =  1
3429, 32, 333eqtr3i 2225 . . . . . . 7  |-  ( 2  x.  ( ( sin `  ( ( 1  / 
2 )  x.  (
pi  /  2 ) ) )  x.  ( cos `  ( ( 1  /  2 )  x.  ( pi  /  2
) ) ) ) )  =  1
358, 20, 343eqtr3i 2225 . . . . . 6  |-  ( 2  x.  ( ( sin `  ( pi  /  4
) )  x.  ( sin `  ( pi  / 
4 ) ) ) )  =  1
3635fveq2i 5564 . . . . 5  |-  ( sqr `  ( 2  x.  (
( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) ) )  =  ( sqr `  1 )
37 4re 9086 . . . . . . . . 9  |-  4  e.  RR
38 4ap0 9108 . . . . . . . . 9  |-  4 #  0
3910, 37, 38redivclapi 8825 . . . . . . . 8  |-  ( pi 
/  4 )  e.  RR
40 resincl 11904 . . . . . . . 8  |-  ( ( pi  /  4 )  e.  RR  ->  ( sin `  ( pi  / 
4 ) )  e.  RR )
4139, 40ax-mp 5 . . . . . . 7  |-  ( sin `  ( pi  /  4
) )  e.  RR
4241, 41remulcli 8059 . . . . . 6  |-  ( ( sin `  ( pi 
/  4 ) )  x.  ( sin `  (
pi  /  4 ) ) )  e.  RR
43 0le2 9099 . . . . . 6  |-  0  <_  2
4441msqge0i 8663 . . . . . 6  |-  0  <_  ( ( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) )
4523, 42, 43, 44sqrtmulii 11318 . . . . 5  |-  ( sqr `  ( 2  x.  (
( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) ) )  =  ( ( sqr `  2 )  x.  ( sqr `  (
( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) ) )
46 sqrt1 11230 . . . . 5  |-  ( sqr `  1 )  =  1
4736, 45, 463eqtr3ri 2226 . . . 4  |-  1  =  ( ( sqr `  2 )  x.  ( sqr `  (
( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) ) )
4842sqrtcli 11304 . . . . . . 7  |-  ( 0  <_  ( ( sin `  ( pi  /  4
) )  x.  ( sin `  ( pi  / 
4 ) ) )  ->  ( sqr `  (
( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) )  e.  RR )
4944, 48ax-mp 5 . . . . . 6  |-  ( sqr `  ( ( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) )  e.  RR
5049recni 8057 . . . . 5  |-  ( sqr `  ( ( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) )  e.  CC
51 sqrt2re 12358 . . . . . . 7  |-  ( sqr `  2 )  e.  RR
5251recni 8057 . . . . . 6  |-  ( sqr `  2 )  e.  CC
53 2pos 9100 . . . . . . . 8  |-  0  <  2
5423, 53sqrtgt0ii 11315 . . . . . . 7  |-  0  <  ( sqr `  2
)
5551, 54gt0ap0ii 8674 . . . . . 6  |-  ( sqr `  2 ) #  0
5652, 55pm3.2i 272 . . . . 5  |-  ( ( sqr `  2 )  e.  CC  /\  ( sqr `  2 ) #  0 )
57 divmulap2 8722 . . . . 5  |-  ( ( 1  e.  CC  /\  ( sqr `  ( ( sin `  ( pi 
/  4 ) )  x.  ( sin `  (
pi  /  4 ) ) ) )  e.  CC  /\  ( ( sqr `  2 )  e.  CC  /\  ( sqr `  2 ) #  0 ) )  ->  (
( 1  /  ( sqr `  2 ) )  =  ( sqr `  (
( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) )  <->  1  =  ( ( sqr `  2 )  x.  ( sqr `  (
( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) ) ) ) )
582, 50, 56, 57mp3an 1348 . . . 4  |-  ( ( 1  /  ( sqr `  2 ) )  =  ( sqr `  (
( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) )  <->  1  =  ( ( sqr `  2 )  x.  ( sqr `  (
( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) ) ) )
5947, 58mpbir 146 . . 3  |-  ( 1  /  ( sqr `  2
) )  =  ( sqr `  ( ( sin `  ( pi 
/  4 ) )  x.  ( sin `  (
pi  /  4 ) ) ) )
60 0re 8045 . . . . 5  |-  0  e.  RR
61 pipos 15132 . . . . . . . 8  |-  0  <  pi
62 4pos 9106 . . . . . . . 8  |-  0  <  4
6310, 37, 61, 62divgt0ii 8965 . . . . . . 7  |-  0  <  ( pi  /  4
)
64 1re 8044 . . . . . . . 8  |-  1  e.  RR
65 pigt2lt4 15128 . . . . . . . . . . 11  |-  ( 2  <  pi  /\  pi  <  4 )
6665simpri 113 . . . . . . . . . 10  |-  pi  <  4
6710, 37, 37, 62ltdiv1ii 8975 . . . . . . . . . 10  |-  ( pi 
<  4  <->  ( pi  /  4 )  <  (
4  /  4 ) )
6866, 67mpbi 145 . . . . . . . . 9  |-  ( pi 
/  4 )  < 
( 4  /  4
)
6937recni 8057 . . . . . . . . . 10  |-  4  e.  CC
7069, 38dividapi 8791 . . . . . . . . 9  |-  ( 4  /  4 )  =  1
7168, 70breqtri 4059 . . . . . . . 8  |-  ( pi 
/  4 )  <  1
7239, 64, 71ltleii 8148 . . . . . . 7  |-  ( pi 
/  4 )  <_ 
1
73 0xr 8092 . . . . . . . 8  |-  0  e.  RR*
74 elioc2 10030 . . . . . . . 8  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  (
( pi  /  4
)  e.  ( 0 (,] 1 )  <->  ( (
pi  /  4 )  e.  RR  /\  0  <  ( pi  /  4
)  /\  ( pi  /  4 )  <_  1
) ) )
7573, 64, 74mp2an 426 . . . . . . 7  |-  ( ( pi  /  4 )  e.  ( 0 (,] 1 )  <->  ( (
pi  /  4 )  e.  RR  /\  0  <  ( pi  /  4
)  /\  ( pi  /  4 )  <_  1
) )
7639, 63, 72, 75mpbir3an 1181 . . . . . 6  |-  ( pi 
/  4 )  e.  ( 0 (,] 1
)
77 sin01gt0 11946 . . . . . 6  |-  ( ( pi  /  4 )  e.  ( 0 (,] 1 )  ->  0  <  ( sin `  (
pi  /  4 ) ) )
7876, 77ax-mp 5 . . . . 5  |-  0  <  ( sin `  (
pi  /  4 ) )
7960, 41, 78ltleii 8148 . . . 4  |-  0  <_  ( sin `  (
pi  /  4 ) )
8041sqrtmsqi 11306 . . . 4  |-  ( 0  <_  ( sin `  (
pi  /  4 ) )  ->  ( sqr `  ( ( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) )  =  ( sin `  (
pi  /  4 ) ) )
8179, 80ax-mp 5 . . 3  |-  ( sqr `  ( ( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) )  =  ( sin `  (
pi  /  4 ) )
8259, 81eqtr2i 2218 . 2  |-  ( sin `  ( pi  /  4
) )  =  ( 1  /  ( sqr `  2 ) )
8359, 81eqtri 2217 . . 3  |-  ( 1  /  ( sqr `  2
) )  =  ( sin `  ( pi 
/  4 ) )
8417fveq2i 5564 . . . 4  |-  ( cos `  ( ( 1  / 
2 )  x.  (
pi  /  2 ) ) )  =  ( cos `  ( pi 
/  4 ) )
856, 18, 843eqtr3i 2225 . . 3  |-  ( sin `  ( pi  /  4
) )  =  ( cos `  ( pi 
/  4 ) )
8683, 85eqtr2i 2218 . 2  |-  ( cos `  ( pi  /  4
) )  =  ( 1  /  ( sqr `  2 ) )
8782, 86pm3.2i 272 1  |-  ( ( sin `  ( pi 
/  4 ) )  =  ( 1  / 
( sqr `  2
) )  /\  ( cos `  ( pi  / 
4 ) )  =  ( 1  /  ( sqr `  2 ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   CCcc 7896   RRcr 7897   0cc0 7898   1c1 7899    + caddc 7901    x. cmul 7903   RR*cxr 8079    < clt 8080    <_ cle 8081   # cap 8627    / cdiv 8718   2c2 9060   4c4 9062   (,]cioc 9983   sqrcsqrt 11180   sincsin 11828   cosccos 11829   picpi 11831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018  ax-pre-suploc 8019  ax-addf 8020  ax-mulf 8021
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-disj 4012  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-map 6718  df-pm 6719  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-9 9075  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-xneg 9866  df-xadd 9867  df-ioo 9986  df-ioc 9987  df-ico 9988  df-icc 9989  df-fz 10103  df-fzo 10237  df-seqfrec 10559  df-exp 10650  df-fac 10837  df-bc 10859  df-ihash 10887  df-shft 10999  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-clim 11463  df-sumdc 11538  df-ef 11832  df-sin 11834  df-cos 11835  df-pi 11837  df-rest 12945  df-topgen 12964  df-psmet 14177  df-xmet 14178  df-met 14179  df-bl 14180  df-mopn 14181  df-top 14342  df-topon 14355  df-bases 14387  df-ntr 14440  df-cn 14532  df-cnp 14533  df-tx 14597  df-cncf 14915  df-limced 15000  df-dvap 15001
This theorem is referenced by:  tan4thpi  15185
  Copyright terms: Public domain W3C validator