| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sincos4thpi | Unicode version | ||
| Description: The sine and cosine of
|
| Ref | Expression |
|---|---|
| sincos4thpi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfcn 9205 |
. . . . . . . . . 10
| |
| 2 | ax-1cn 7972 |
. . . . . . . . . . 11
| |
| 3 | 2halves 9220 |
. . . . . . . . . . 11
| |
| 4 | 2, 3 | ax-mp 5 |
. . . . . . . . . 10
|
| 5 | sincosq1eq 15075 |
. . . . . . . . . 10
| |
| 6 | 1, 1, 4, 5 | mp3an 1348 |
. . . . . . . . 9
|
| 7 | 6 | oveq2i 5933 |
. . . . . . . 8
|
| 8 | 7 | oveq2i 5933 |
. . . . . . 7
|
| 9 | 2cn 9061 |
. . . . . . . . . . . 12
| |
| 10 | pire 15022 |
. . . . . . . . . . . . 13
| |
| 11 | 10 | recni 8038 |
. . . . . . . . . . . 12
|
| 12 | 2ap0 9083 |
. . . . . . . . . . . 12
| |
| 13 | 2, 9, 11, 9, 12, 12 | divmuldivapi 8799 |
. . . . . . . . . . 11
|
| 14 | 11 | mullidi 8029 |
. . . . . . . . . . . 12
|
| 15 | 2t2e4 9145 |
. . . . . . . . . . . 12
| |
| 16 | 14, 15 | oveq12i 5934 |
. . . . . . . . . . 11
|
| 17 | 13, 16 | eqtri 2217 |
. . . . . . . . . 10
|
| 18 | 17 | fveq2i 5561 |
. . . . . . . . 9
|
| 19 | 18, 18 | oveq12i 5934 |
. . . . . . . 8
|
| 20 | 19 | oveq2i 5933 |
. . . . . . 7
|
| 21 | 9, 12 | recidapi 8770 |
. . . . . . . . . . 11
|
| 22 | 21 | oveq1i 5932 |
. . . . . . . . . 10
|
| 23 | 2re 9060 |
. . . . . . . . . . . . 13
| |
| 24 | 10, 23, 12 | redivclapi 8806 |
. . . . . . . . . . . 12
|
| 25 | 24 | recni 8038 |
. . . . . . . . . . 11
|
| 26 | 9, 1, 25 | mulassi 8035 |
. . . . . . . . . 10
|
| 27 | 25 | mullidi 8029 |
. . . . . . . . . 10
|
| 28 | 22, 26, 27 | 3eqtr3i 2225 |
. . . . . . . . 9
|
| 29 | 28 | fveq2i 5561 |
. . . . . . . 8
|
| 30 | 1, 25 | mulcli 8031 |
. . . . . . . . 9
|
| 31 | sin2t 11914 |
. . . . . . . . 9
| |
| 32 | 30, 31 | ax-mp 5 |
. . . . . . . 8
|
| 33 | sinhalfpi 15032 |
. . . . . . . 8
| |
| 34 | 29, 32, 33 | 3eqtr3i 2225 |
. . . . . . 7
|
| 35 | 8, 20, 34 | 3eqtr3i 2225 |
. . . . . 6
|
| 36 | 35 | fveq2i 5561 |
. . . . 5
|
| 37 | 4re 9067 |
. . . . . . . . 9
| |
| 38 | 4ap0 9089 |
. . . . . . . . 9
| |
| 39 | 10, 37, 38 | redivclapi 8806 |
. . . . . . . 8
|
| 40 | resincl 11885 |
. . . . . . . 8
| |
| 41 | 39, 40 | ax-mp 5 |
. . . . . . 7
|
| 42 | 41, 41 | remulcli 8040 |
. . . . . 6
|
| 43 | 0le2 9080 |
. . . . . 6
| |
| 44 | 41 | msqge0i 8644 |
. . . . . 6
|
| 45 | 23, 42, 43, 44 | sqrtmulii 11299 |
. . . . 5
|
| 46 | sqrt1 11211 |
. . . . 5
| |
| 47 | 36, 45, 46 | 3eqtr3ri 2226 |
. . . 4
|
| 48 | 42 | sqrtcli 11285 |
. . . . . . 7
|
| 49 | 44, 48 | ax-mp 5 |
. . . . . 6
|
| 50 | 49 | recni 8038 |
. . . . 5
|
| 51 | sqrt2re 12331 |
. . . . . . 7
| |
| 52 | 51 | recni 8038 |
. . . . . 6
|
| 53 | 2pos 9081 |
. . . . . . . 8
| |
| 54 | 23, 53 | sqrtgt0ii 11296 |
. . . . . . 7
|
| 55 | 51, 54 | gt0ap0ii 8655 |
. . . . . 6
|
| 56 | 52, 55 | pm3.2i 272 |
. . . . 5
|
| 57 | divmulap2 8703 |
. . . . 5
| |
| 58 | 2, 50, 56, 57 | mp3an 1348 |
. . . 4
|
| 59 | 47, 58 | mpbir 146 |
. . 3
|
| 60 | 0re 8026 |
. . . . 5
| |
| 61 | pipos 15024 |
. . . . . . . 8
| |
| 62 | 4pos 9087 |
. . . . . . . 8
| |
| 63 | 10, 37, 61, 62 | divgt0ii 8946 |
. . . . . . 7
|
| 64 | 1re 8025 |
. . . . . . . 8
| |
| 65 | pigt2lt4 15020 |
. . . . . . . . . . 11
| |
| 66 | 65 | simpri 113 |
. . . . . . . . . 10
|
| 67 | 10, 37, 37, 62 | ltdiv1ii 8956 |
. . . . . . . . . 10
|
| 68 | 66, 67 | mpbi 145 |
. . . . . . . . 9
|
| 69 | 37 | recni 8038 |
. . . . . . . . . 10
|
| 70 | 69, 38 | dividapi 8772 |
. . . . . . . . 9
|
| 71 | 68, 70 | breqtri 4058 |
. . . . . . . 8
|
| 72 | 39, 64, 71 | ltleii 8129 |
. . . . . . 7
|
| 73 | 0xr 8073 |
. . . . . . . 8
| |
| 74 | elioc2 10011 |
. . . . . . . 8
| |
| 75 | 73, 64, 74 | mp2an 426 |
. . . . . . 7
|
| 76 | 39, 63, 72, 75 | mpbir3an 1181 |
. . . . . 6
|
| 77 | sin01gt0 11927 |
. . . . . 6
| |
| 78 | 76, 77 | ax-mp 5 |
. . . . 5
|
| 79 | 60, 41, 78 | ltleii 8129 |
. . . 4
|
| 80 | 41 | sqrtmsqi 11287 |
. . . 4
|
| 81 | 79, 80 | ax-mp 5 |
. . 3
|
| 82 | 59, 81 | eqtr2i 2218 |
. 2
|
| 83 | 59, 81 | eqtri 2217 |
. . 3
|
| 84 | 17 | fveq2i 5561 |
. . . 4
|
| 85 | 6, 18, 84 | 3eqtr3i 2225 |
. . 3
|
| 86 | 83, 85 | eqtr2i 2218 |
. 2
|
| 87 | 82, 86 | pm3.2i 272 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 ax-pre-suploc 8000 ax-addf 8001 ax-mulf 8002 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-disj 4011 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-of 6135 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-oadd 6478 df-er 6592 df-map 6709 df-pm 6710 df-en 6800 df-dom 6801 df-fin 6802 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-9 9056 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-xneg 9847 df-xadd 9848 df-ioo 9967 df-ioc 9968 df-ico 9969 df-icc 9970 df-fz 10084 df-fzo 10218 df-seqfrec 10540 df-exp 10631 df-fac 10818 df-bc 10840 df-ihash 10868 df-shft 10980 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 df-sumdc 11519 df-ef 11813 df-sin 11815 df-cos 11816 df-pi 11818 df-rest 12912 df-topgen 12931 df-psmet 14099 df-xmet 14100 df-met 14101 df-bl 14102 df-mopn 14103 df-top 14234 df-topon 14247 df-bases 14279 df-ntr 14332 df-cn 14424 df-cnp 14425 df-tx 14489 df-cncf 14807 df-limced 14892 df-dvap 14893 |
| This theorem is referenced by: tan4thpi 15077 |
| Copyright terms: Public domain | W3C validator |