ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sincos4thpi Unicode version

Theorem sincos4thpi 13928
Description: The sine and cosine of  pi  /  4. (Contributed by Paul Chapman, 25-Jan-2008.)
Assertion
Ref Expression
sincos4thpi  |-  ( ( sin `  ( pi 
/  4 ) )  =  ( 1  / 
( sqr `  2
) )  /\  ( cos `  ( pi  / 
4 ) )  =  ( 1  /  ( sqr `  2 ) ) )

Proof of Theorem sincos4thpi
StepHypRef Expression
1 halfcn 9122 . . . . . . . . . 10  |-  ( 1  /  2 )  e.  CC
2 ax-1cn 7895 . . . . . . . . . . 11  |-  1  e.  CC
3 2halves 9137 . . . . . . . . . . 11  |-  ( 1  e.  CC  ->  (
( 1  /  2
)  +  ( 1  /  2 ) )  =  1 )
42, 3ax-mp 5 . . . . . . . . . 10  |-  ( ( 1  /  2 )  +  ( 1  / 
2 ) )  =  1
5 sincosq1eq 13927 . . . . . . . . . 10  |-  ( ( ( 1  /  2
)  e.  CC  /\  ( 1  /  2
)  e.  CC  /\  ( ( 1  / 
2 )  +  ( 1  /  2 ) )  =  1 )  ->  ( sin `  (
( 1  /  2
)  x.  ( pi 
/  2 ) ) )  =  ( cos `  ( ( 1  / 
2 )  x.  (
pi  /  2 ) ) ) )
61, 1, 4, 5mp3an 1337 . . . . . . . . 9  |-  ( sin `  ( ( 1  / 
2 )  x.  (
pi  /  2 ) ) )  =  ( cos `  ( ( 1  /  2 )  x.  ( pi  / 
2 ) ) )
76oveq2i 5880 . . . . . . . 8  |-  ( ( sin `  ( ( 1  /  2 )  x.  ( pi  / 
2 ) ) )  x.  ( sin `  (
( 1  /  2
)  x.  ( pi 
/  2 ) ) ) )  =  ( ( sin `  (
( 1  /  2
)  x.  ( pi 
/  2 ) ) )  x.  ( cos `  ( ( 1  / 
2 )  x.  (
pi  /  2 ) ) ) )
87oveq2i 5880 . . . . . . 7  |-  ( 2  x.  ( ( sin `  ( ( 1  / 
2 )  x.  (
pi  /  2 ) ) )  x.  ( sin `  ( ( 1  /  2 )  x.  ( pi  /  2
) ) ) ) )  =  ( 2  x.  ( ( sin `  ( ( 1  / 
2 )  x.  (
pi  /  2 ) ) )  x.  ( cos `  ( ( 1  /  2 )  x.  ( pi  /  2
) ) ) ) )
9 2cn 8979 . . . . . . . . . . . 12  |-  2  e.  CC
10 pire 13874 . . . . . . . . . . . . 13  |-  pi  e.  RR
1110recni 7960 . . . . . . . . . . . 12  |-  pi  e.  CC
12 2ap0 9001 . . . . . . . . . . . 12  |-  2 #  0
132, 9, 11, 9, 12, 12divmuldivapi 8718 . . . . . . . . . . 11  |-  ( ( 1  /  2 )  x.  ( pi  / 
2 ) )  =  ( ( 1  x.  pi )  /  (
2  x.  2 ) )
1411mulid2i 7951 . . . . . . . . . . . 12  |-  ( 1  x.  pi )  =  pi
15 2t2e4 9062 . . . . . . . . . . . 12  |-  ( 2  x.  2 )  =  4
1614, 15oveq12i 5881 . . . . . . . . . . 11  |-  ( ( 1  x.  pi )  /  ( 2  x.  2 ) )  =  ( pi  /  4
)
1713, 16eqtri 2198 . . . . . . . . . 10  |-  ( ( 1  /  2 )  x.  ( pi  / 
2 ) )  =  ( pi  /  4
)
1817fveq2i 5514 . . . . . . . . 9  |-  ( sin `  ( ( 1  / 
2 )  x.  (
pi  /  2 ) ) )  =  ( sin `  ( pi 
/  4 ) )
1918, 18oveq12i 5881 . . . . . . . 8  |-  ( ( sin `  ( ( 1  /  2 )  x.  ( pi  / 
2 ) ) )  x.  ( sin `  (
( 1  /  2
)  x.  ( pi 
/  2 ) ) ) )  =  ( ( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) )
2019oveq2i 5880 . . . . . . 7  |-  ( 2  x.  ( ( sin `  ( ( 1  / 
2 )  x.  (
pi  /  2 ) ) )  x.  ( sin `  ( ( 1  /  2 )  x.  ( pi  /  2
) ) ) ) )  =  ( 2  x.  ( ( sin `  ( pi  /  4
) )  x.  ( sin `  ( pi  / 
4 ) ) ) )
219, 12recidapi 8689 . . . . . . . . . . 11  |-  ( 2  x.  ( 1  / 
2 ) )  =  1
2221oveq1i 5879 . . . . . . . . . 10  |-  ( ( 2  x.  ( 1  /  2 ) )  x.  ( pi  / 
2 ) )  =  ( 1  x.  (
pi  /  2 ) )
23 2re 8978 . . . . . . . . . . . . 13  |-  2  e.  RR
2410, 23, 12redivclapi 8725 . . . . . . . . . . . 12  |-  ( pi 
/  2 )  e.  RR
2524recni 7960 . . . . . . . . . . 11  |-  ( pi 
/  2 )  e.  CC
269, 1, 25mulassi 7957 . . . . . . . . . 10  |-  ( ( 2  x.  ( 1  /  2 ) )  x.  ( pi  / 
2 ) )  =  ( 2  x.  (
( 1  /  2
)  x.  ( pi 
/  2 ) ) )
2725mulid2i 7951 . . . . . . . . . 10  |-  ( 1  x.  ( pi  / 
2 ) )  =  ( pi  /  2
)
2822, 26, 273eqtr3i 2206 . . . . . . . . 9  |-  ( 2  x.  ( ( 1  /  2 )  x.  ( pi  /  2
) ) )  =  ( pi  /  2
)
2928fveq2i 5514 . . . . . . . 8  |-  ( sin `  ( 2  x.  (
( 1  /  2
)  x.  ( pi 
/  2 ) ) ) )  =  ( sin `  ( pi 
/  2 ) )
301, 25mulcli 7953 . . . . . . . . 9  |-  ( ( 1  /  2 )  x.  ( pi  / 
2 ) )  e.  CC
31 sin2t 11741 . . . . . . . . 9  |-  ( ( ( 1  /  2
)  x.  ( pi 
/  2 ) )  e.  CC  ->  ( sin `  ( 2  x.  ( ( 1  / 
2 )  x.  (
pi  /  2 ) ) ) )  =  ( 2  x.  (
( sin `  (
( 1  /  2
)  x.  ( pi 
/  2 ) ) )  x.  ( cos `  ( ( 1  / 
2 )  x.  (
pi  /  2 ) ) ) ) ) )
3230, 31ax-mp 5 . . . . . . . 8  |-  ( sin `  ( 2  x.  (
( 1  /  2
)  x.  ( pi 
/  2 ) ) ) )  =  ( 2  x.  ( ( sin `  ( ( 1  /  2 )  x.  ( pi  / 
2 ) ) )  x.  ( cos `  (
( 1  /  2
)  x.  ( pi 
/  2 ) ) ) ) )
33 sinhalfpi 13884 . . . . . . . 8  |-  ( sin `  ( pi  /  2
) )  =  1
3429, 32, 333eqtr3i 2206 . . . . . . 7  |-  ( 2  x.  ( ( sin `  ( ( 1  / 
2 )  x.  (
pi  /  2 ) ) )  x.  ( cos `  ( ( 1  /  2 )  x.  ( pi  /  2
) ) ) ) )  =  1
358, 20, 343eqtr3i 2206 . . . . . 6  |-  ( 2  x.  ( ( sin `  ( pi  /  4
) )  x.  ( sin `  ( pi  / 
4 ) ) ) )  =  1
3635fveq2i 5514 . . . . 5  |-  ( sqr `  ( 2  x.  (
( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) ) )  =  ( sqr `  1 )
37 4re 8985 . . . . . . . . 9  |-  4  e.  RR
38 4ap0 9007 . . . . . . . . 9  |-  4 #  0
3910, 37, 38redivclapi 8725 . . . . . . . 8  |-  ( pi 
/  4 )  e.  RR
40 resincl 11712 . . . . . . . 8  |-  ( ( pi  /  4 )  e.  RR  ->  ( sin `  ( pi  / 
4 ) )  e.  RR )
4139, 40ax-mp 5 . . . . . . 7  |-  ( sin `  ( pi  /  4
) )  e.  RR
4241, 41remulcli 7962 . . . . . 6  |-  ( ( sin `  ( pi 
/  4 ) )  x.  ( sin `  (
pi  /  4 ) ) )  e.  RR
43 0le2 8998 . . . . . 6  |-  0  <_  2
4441msqge0i 8564 . . . . . 6  |-  0  <_  ( ( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) )
4523, 42, 43, 44sqrtmulii 11127 . . . . 5  |-  ( sqr `  ( 2  x.  (
( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) ) )  =  ( ( sqr `  2 )  x.  ( sqr `  (
( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) ) )
46 sqrt1 11039 . . . . 5  |-  ( sqr `  1 )  =  1
4736, 45, 463eqtr3ri 2207 . . . 4  |-  1  =  ( ( sqr `  2 )  x.  ( sqr `  (
( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) ) )
4842sqrtcli 11113 . . . . . . 7  |-  ( 0  <_  ( ( sin `  ( pi  /  4
) )  x.  ( sin `  ( pi  / 
4 ) ) )  ->  ( sqr `  (
( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) )  e.  RR )
4944, 48ax-mp 5 . . . . . 6  |-  ( sqr `  ( ( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) )  e.  RR
5049recni 7960 . . . . 5  |-  ( sqr `  ( ( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) )  e.  CC
51 sqrt2re 12146 . . . . . . 7  |-  ( sqr `  2 )  e.  RR
5251recni 7960 . . . . . 6  |-  ( sqr `  2 )  e.  CC
53 2pos 8999 . . . . . . . 8  |-  0  <  2
5423, 53sqrtgt0ii 11124 . . . . . . 7  |-  0  <  ( sqr `  2
)
5551, 54gt0ap0ii 8575 . . . . . 6  |-  ( sqr `  2 ) #  0
5652, 55pm3.2i 272 . . . . 5  |-  ( ( sqr `  2 )  e.  CC  /\  ( sqr `  2 ) #  0 )
57 divmulap2 8622 . . . . 5  |-  ( ( 1  e.  CC  /\  ( sqr `  ( ( sin `  ( pi 
/  4 ) )  x.  ( sin `  (
pi  /  4 ) ) ) )  e.  CC  /\  ( ( sqr `  2 )  e.  CC  /\  ( sqr `  2 ) #  0 ) )  ->  (
( 1  /  ( sqr `  2 ) )  =  ( sqr `  (
( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) )  <->  1  =  ( ( sqr `  2 )  x.  ( sqr `  (
( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) ) ) ) )
582, 50, 56, 57mp3an 1337 . . . 4  |-  ( ( 1  /  ( sqr `  2 ) )  =  ( sqr `  (
( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) )  <->  1  =  ( ( sqr `  2 )  x.  ( sqr `  (
( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) ) ) )
5947, 58mpbir 146 . . 3  |-  ( 1  /  ( sqr `  2
) )  =  ( sqr `  ( ( sin `  ( pi 
/  4 ) )  x.  ( sin `  (
pi  /  4 ) ) ) )
60 0re 7948 . . . . 5  |-  0  e.  RR
61 pipos 13876 . . . . . . . 8  |-  0  <  pi
62 4pos 9005 . . . . . . . 8  |-  0  <  4
6310, 37, 61, 62divgt0ii 8865 . . . . . . 7  |-  0  <  ( pi  /  4
)
64 1re 7947 . . . . . . . 8  |-  1  e.  RR
65 pigt2lt4 13872 . . . . . . . . . . 11  |-  ( 2  <  pi  /\  pi  <  4 )
6665simpri 113 . . . . . . . . . 10  |-  pi  <  4
6710, 37, 37, 62ltdiv1ii 8875 . . . . . . . . . 10  |-  ( pi 
<  4  <->  ( pi  /  4 )  <  (
4  /  4 ) )
6866, 67mpbi 145 . . . . . . . . 9  |-  ( pi 
/  4 )  < 
( 4  /  4
)
6937recni 7960 . . . . . . . . . 10  |-  4  e.  CC
7069, 38dividapi 8691 . . . . . . . . 9  |-  ( 4  /  4 )  =  1
7168, 70breqtri 4025 . . . . . . . 8  |-  ( pi 
/  4 )  <  1
7239, 64, 71ltleii 8050 . . . . . . 7  |-  ( pi 
/  4 )  <_ 
1
73 0xr 7994 . . . . . . . 8  |-  0  e.  RR*
74 elioc2 9923 . . . . . . . 8  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  (
( pi  /  4
)  e.  ( 0 (,] 1 )  <->  ( (
pi  /  4 )  e.  RR  /\  0  <  ( pi  /  4
)  /\  ( pi  /  4 )  <_  1
) ) )
7573, 64, 74mp2an 426 . . . . . . 7  |-  ( ( pi  /  4 )  e.  ( 0 (,] 1 )  <->  ( (
pi  /  4 )  e.  RR  /\  0  <  ( pi  /  4
)  /\  ( pi  /  4 )  <_  1
) )
7639, 63, 72, 75mpbir3an 1179 . . . . . 6  |-  ( pi 
/  4 )  e.  ( 0 (,] 1
)
77 sin01gt0 11753 . . . . . 6  |-  ( ( pi  /  4 )  e.  ( 0 (,] 1 )  ->  0  <  ( sin `  (
pi  /  4 ) ) )
7876, 77ax-mp 5 . . . . 5  |-  0  <  ( sin `  (
pi  /  4 ) )
7960, 41, 78ltleii 8050 . . . 4  |-  0  <_  ( sin `  (
pi  /  4 ) )
8041sqrtmsqi 11115 . . . 4  |-  ( 0  <_  ( sin `  (
pi  /  4 ) )  ->  ( sqr `  ( ( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) )  =  ( sin `  (
pi  /  4 ) ) )
8179, 80ax-mp 5 . . 3  |-  ( sqr `  ( ( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) )  =  ( sin `  (
pi  /  4 ) )
8259, 81eqtr2i 2199 . 2  |-  ( sin `  ( pi  /  4
) )  =  ( 1  /  ( sqr `  2 ) )
8359, 81eqtri 2198 . . 3  |-  ( 1  /  ( sqr `  2
) )  =  ( sin `  ( pi 
/  4 ) )
8417fveq2i 5514 . . . 4  |-  ( cos `  ( ( 1  / 
2 )  x.  (
pi  /  2 ) ) )  =  ( cos `  ( pi 
/  4 ) )
856, 18, 843eqtr3i 2206 . . 3  |-  ( sin `  ( pi  /  4
) )  =  ( cos `  ( pi 
/  4 ) )
8683, 85eqtr2i 2199 . 2  |-  ( cos `  ( pi  /  4
) )  =  ( 1  /  ( sqr `  2 ) )
8782, 86pm3.2i 272 1  |-  ( ( sin `  ( pi 
/  4 ) )  =  ( 1  / 
( sqr `  2
) )  /\  ( cos `  ( pi  / 
4 ) )  =  ( 1  /  ( sqr `  2 ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4000   ` cfv 5212  (class class class)co 5869   CCcc 7800   RRcr 7801   0cc0 7802   1c1 7803    + caddc 7805    x. cmul 7807   RR*cxr 7981    < clt 7982    <_ cle 7983   # cap 8528    / cdiv 8618   2c2 8959   4c4 8961   (,]cioc 9876   sqrcsqrt 10989   sincsin 11636   cosccos 11637   picpi 11639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922  ax-pre-suploc 7923  ax-addf 7924  ax-mulf 7925
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-disj 3978  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-of 6077  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-map 6644  df-pm 6645  df-en 6735  df-dom 6736  df-fin 6737  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-5 8970  df-6 8971  df-7 8972  df-8 8973  df-9 8974  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-xneg 9759  df-xadd 9760  df-ioo 9879  df-ioc 9880  df-ico 9881  df-icc 9882  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-fac 10690  df-bc 10712  df-ihash 10740  df-shft 10808  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-sumdc 11346  df-ef 11640  df-sin 11642  df-cos 11643  df-pi 11645  df-rest 12638  df-topgen 12657  df-psmet 13154  df-xmet 13155  df-met 13156  df-bl 13157  df-mopn 13158  df-top 13163  df-topon 13176  df-bases 13208  df-ntr 13263  df-cn 13355  df-cnp 13356  df-tx 13420  df-cncf 13725  df-limced 13792  df-dvap 13793
This theorem is referenced by:  tan4thpi  13929
  Copyright terms: Public domain W3C validator