| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sincos4thpi | Unicode version | ||
| Description: The sine and cosine of
|
| Ref | Expression |
|---|---|
| sincos4thpi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfcn 9251 |
. . . . . . . . . 10
| |
| 2 | ax-1cn 8018 |
. . . . . . . . . . 11
| |
| 3 | 2halves 9266 |
. . . . . . . . . . 11
| |
| 4 | 2, 3 | ax-mp 5 |
. . . . . . . . . 10
|
| 5 | sincosq1eq 15311 |
. . . . . . . . . 10
| |
| 6 | 1, 1, 4, 5 | mp3an 1350 |
. . . . . . . . 9
|
| 7 | 6 | oveq2i 5955 |
. . . . . . . 8
|
| 8 | 7 | oveq2i 5955 |
. . . . . . 7
|
| 9 | 2cn 9107 |
. . . . . . . . . . . 12
| |
| 10 | pire 15258 |
. . . . . . . . . . . . 13
| |
| 11 | 10 | recni 8084 |
. . . . . . . . . . . 12
|
| 12 | 2ap0 9129 |
. . . . . . . . . . . 12
| |
| 13 | 2, 9, 11, 9, 12, 12 | divmuldivapi 8845 |
. . . . . . . . . . 11
|
| 14 | 11 | mullidi 8075 |
. . . . . . . . . . . 12
|
| 15 | 2t2e4 9191 |
. . . . . . . . . . . 12
| |
| 16 | 14, 15 | oveq12i 5956 |
. . . . . . . . . . 11
|
| 17 | 13, 16 | eqtri 2226 |
. . . . . . . . . 10
|
| 18 | 17 | fveq2i 5579 |
. . . . . . . . 9
|
| 19 | 18, 18 | oveq12i 5956 |
. . . . . . . 8
|
| 20 | 19 | oveq2i 5955 |
. . . . . . 7
|
| 21 | 9, 12 | recidapi 8816 |
. . . . . . . . . . 11
|
| 22 | 21 | oveq1i 5954 |
. . . . . . . . . 10
|
| 23 | 2re 9106 |
. . . . . . . . . . . . 13
| |
| 24 | 10, 23, 12 | redivclapi 8852 |
. . . . . . . . . . . 12
|
| 25 | 24 | recni 8084 |
. . . . . . . . . . 11
|
| 26 | 9, 1, 25 | mulassi 8081 |
. . . . . . . . . 10
|
| 27 | 25 | mullidi 8075 |
. . . . . . . . . 10
|
| 28 | 22, 26, 27 | 3eqtr3i 2234 |
. . . . . . . . 9
|
| 29 | 28 | fveq2i 5579 |
. . . . . . . 8
|
| 30 | 1, 25 | mulcli 8077 |
. . . . . . . . 9
|
| 31 | sin2t 12060 |
. . . . . . . . 9
| |
| 32 | 30, 31 | ax-mp 5 |
. . . . . . . 8
|
| 33 | sinhalfpi 15268 |
. . . . . . . 8
| |
| 34 | 29, 32, 33 | 3eqtr3i 2234 |
. . . . . . 7
|
| 35 | 8, 20, 34 | 3eqtr3i 2234 |
. . . . . 6
|
| 36 | 35 | fveq2i 5579 |
. . . . 5
|
| 37 | 4re 9113 |
. . . . . . . . 9
| |
| 38 | 4ap0 9135 |
. . . . . . . . 9
| |
| 39 | 10, 37, 38 | redivclapi 8852 |
. . . . . . . 8
|
| 40 | resincl 12031 |
. . . . . . . 8
| |
| 41 | 39, 40 | ax-mp 5 |
. . . . . . 7
|
| 42 | 41, 41 | remulcli 8086 |
. . . . . 6
|
| 43 | 0le2 9126 |
. . . . . 6
| |
| 44 | 41 | msqge0i 8690 |
. . . . . 6
|
| 45 | 23, 42, 43, 44 | sqrtmulii 11445 |
. . . . 5
|
| 46 | sqrt1 11357 |
. . . . 5
| |
| 47 | 36, 45, 46 | 3eqtr3ri 2235 |
. . . 4
|
| 48 | 42 | sqrtcli 11431 |
. . . . . . 7
|
| 49 | 44, 48 | ax-mp 5 |
. . . . . 6
|
| 50 | 49 | recni 8084 |
. . . . 5
|
| 51 | sqrt2re 12485 |
. . . . . . 7
| |
| 52 | 51 | recni 8084 |
. . . . . 6
|
| 53 | 2pos 9127 |
. . . . . . . 8
| |
| 54 | 23, 53 | sqrtgt0ii 11442 |
. . . . . . 7
|
| 55 | 51, 54 | gt0ap0ii 8701 |
. . . . . 6
|
| 56 | 52, 55 | pm3.2i 272 |
. . . . 5
|
| 57 | divmulap2 8749 |
. . . . 5
| |
| 58 | 2, 50, 56, 57 | mp3an 1350 |
. . . 4
|
| 59 | 47, 58 | mpbir 146 |
. . 3
|
| 60 | 0re 8072 |
. . . . 5
| |
| 61 | pipos 15260 |
. . . . . . . 8
| |
| 62 | 4pos 9133 |
. . . . . . . 8
| |
| 63 | 10, 37, 61, 62 | divgt0ii 8992 |
. . . . . . 7
|
| 64 | 1re 8071 |
. . . . . . . 8
| |
| 65 | pigt2lt4 15256 |
. . . . . . . . . . 11
| |
| 66 | 65 | simpri 113 |
. . . . . . . . . 10
|
| 67 | 10, 37, 37, 62 | ltdiv1ii 9002 |
. . . . . . . . . 10
|
| 68 | 66, 67 | mpbi 145 |
. . . . . . . . 9
|
| 69 | 37 | recni 8084 |
. . . . . . . . . 10
|
| 70 | 69, 38 | dividapi 8818 |
. . . . . . . . 9
|
| 71 | 68, 70 | breqtri 4069 |
. . . . . . . 8
|
| 72 | 39, 64, 71 | ltleii 8175 |
. . . . . . 7
|
| 73 | 0xr 8119 |
. . . . . . . 8
| |
| 74 | elioc2 10058 |
. . . . . . . 8
| |
| 75 | 73, 64, 74 | mp2an 426 |
. . . . . . 7
|
| 76 | 39, 63, 72, 75 | mpbir3an 1182 |
. . . . . 6
|
| 77 | sin01gt0 12073 |
. . . . . 6
| |
| 78 | 76, 77 | ax-mp 5 |
. . . . 5
|
| 79 | 60, 41, 78 | ltleii 8175 |
. . . 4
|
| 80 | 41 | sqrtmsqi 11433 |
. . . 4
|
| 81 | 79, 80 | ax-mp 5 |
. . 3
|
| 82 | 59, 81 | eqtr2i 2227 |
. 2
|
| 83 | 59, 81 | eqtri 2226 |
. . 3
|
| 84 | 17 | fveq2i 5579 |
. . . 4
|
| 85 | 6, 18, 84 | 3eqtr3i 2234 |
. . 3
|
| 86 | 83, 85 | eqtr2i 2227 |
. 2
|
| 87 | 82, 86 | pm3.2i 272 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 ax-arch 8044 ax-caucvg 8045 ax-pre-suploc 8046 ax-addf 8047 ax-mulf 8048 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-disj 4022 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-isom 5280 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-of 6158 df-1st 6226 df-2nd 6227 df-recs 6391 df-irdg 6456 df-frec 6477 df-1o 6502 df-oadd 6506 df-er 6620 df-map 6737 df-pm 6738 df-en 6828 df-dom 6829 df-fin 6830 df-sup 7086 df-inf 7087 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-5 9098 df-6 9099 df-7 9100 df-8 9101 df-9 9102 df-n0 9296 df-z 9373 df-uz 9649 df-q 9741 df-rp 9776 df-xneg 9894 df-xadd 9895 df-ioo 10014 df-ioc 10015 df-ico 10016 df-icc 10017 df-fz 10131 df-fzo 10265 df-seqfrec 10593 df-exp 10684 df-fac 10871 df-bc 10893 df-ihash 10921 df-shft 11126 df-cj 11153 df-re 11154 df-im 11155 df-rsqrt 11309 df-abs 11310 df-clim 11590 df-sumdc 11665 df-ef 11959 df-sin 11961 df-cos 11962 df-pi 11964 df-rest 13073 df-topgen 13092 df-psmet 14305 df-xmet 14306 df-met 14307 df-bl 14308 df-mopn 14309 df-top 14470 df-topon 14483 df-bases 14515 df-ntr 14568 df-cn 14660 df-cnp 14661 df-tx 14725 df-cncf 15043 df-limced 15128 df-dvap 15129 |
| This theorem is referenced by: tan4thpi 15313 |
| Copyright terms: Public domain | W3C validator |