![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > necon2ai | Unicode version |
Description: Contrapositive inference for inequality. (Contributed by NM, 16-Jan-2007.) (Proof rewritten by Jim Kingdon, 16-May-2018.) |
Ref | Expression |
---|---|
necon2ai.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
necon2ai |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2ai.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | con2i 628 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | df-ne 2365 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | sylibr 134 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
This theorem depends on definitions: df-bi 117 df-ne 2365 |
This theorem is referenced by: necon2i 2420 neneqad 2443 intexr 4179 iin0r 4198 tfrlemisucaccv 6378 pm54.43 7250 renepnf 8067 renemnf 8068 lt0ne0d 8532 nnne0 9010 nn0nepnf 9311 hashennn 10851 bj-intexr 15400 |
Copyright terms: Public domain | W3C validator |