ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon2ai Unicode version

Theorem necon2ai 2413
Description: Contrapositive inference for inequality. (Contributed by NM, 16-Jan-2007.) (Proof rewritten by Jim Kingdon, 16-May-2018.)
Hypothesis
Ref Expression
necon2ai.1  |-  ( A  =  B  ->  -.  ph )
Assertion
Ref Expression
necon2ai  |-  ( ph  ->  A  =/=  B )

Proof of Theorem necon2ai
StepHypRef Expression
1 necon2ai.1 . . 3  |-  ( A  =  B  ->  -.  ph )
21con2i 628 . 2  |-  ( ph  ->  -.  A  =  B )
3 df-ne 2360 . 2  |-  ( A  =/=  B  <->  -.  A  =  B )
42, 3sylibr 134 1  |-  ( ph  ->  A  =/=  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1363    =/= wne 2359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117  df-ne 2360
This theorem is referenced by:  necon2i  2415  neneqad  2438  intexr  4164  iin0r  4183  tfrlemisucaccv  6343  pm54.43  7206  renepnf  8022  renemnf  8023  lt0ne0d  8487  nnne0  8964  nn0nepnf  9264  hashennn  10777  bj-intexr  15043
  Copyright terms: Public domain W3C validator