Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > renemnf | Unicode version |
Description: No real equals minus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
renemnf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfnre 7941 | . . . 4 | |
2 | 1 | neli 2433 | . . 3 |
3 | eleq1 2229 | . . 3 | |
4 | 2, 3 | mtbiri 665 | . 2 |
5 | 4 | necon2ai 2390 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wcel 2136 wne 2336 cr 7752 cmnf 7931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-pnf 7935 df-mnf 7936 |
This theorem is referenced by: renemnfd 7950 renfdisj 7958 ltxrlt 7964 xrnemnf 9713 xrlttri3 9733 ngtmnft 9753 xrrebnd 9755 rexneg 9766 xrmnfdc 9779 rexadd 9788 xaddnemnf 9793 xaddcom 9797 xaddid1 9798 xnegdi 9804 xpncan 9807 xleadd1a 9809 xltadd1 9812 xposdif 9818 xrmaxrecl 11196 isxmet2d 12988 |
Copyright terms: Public domain | W3C validator |