| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > renemnf | Unicode version | ||
| Description: No real equals minus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| renemnf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfnre 8189 |
. . . 4
| |
| 2 | 1 | neli 2497 |
. . 3
|
| 3 | eleq1 2292 |
. . 3
| |
| 4 | 2, 3 | mtbiri 679 |
. 2
|
| 5 | 4 | necon2ai 2454 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-pnf 8183 df-mnf 8184 |
| This theorem is referenced by: renemnfd 8198 renfdisj 8206 ltxrlt 8212 xrnemnf 9973 xrlttri3 9993 ngtmnft 10013 xrrebnd 10015 rexneg 10026 xrmnfdc 10039 rexadd 10048 xaddnemnf 10053 xaddcom 10057 xaddid1 10058 xnegdi 10064 xpncan 10067 xleadd1a 10069 xltadd1 10072 xposdif 10078 xrmaxrecl 11766 isxmet2d 15022 |
| Copyright terms: Public domain | W3C validator |