| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > renemnf | Unicode version | ||
| Description: No real equals minus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| renemnf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfnre 8117 |
. . . 4
| |
| 2 | 1 | neli 2473 |
. . 3
|
| 3 | eleq1 2268 |
. . 3
| |
| 4 | 2, 3 | mtbiri 677 |
. 2
|
| 5 | 4 | necon2ai 2430 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-pnf 8111 df-mnf 8112 |
| This theorem is referenced by: renemnfd 8126 renfdisj 8134 ltxrlt 8140 xrnemnf 9901 xrlttri3 9921 ngtmnft 9941 xrrebnd 9943 rexneg 9954 xrmnfdc 9967 rexadd 9976 xaddnemnf 9981 xaddcom 9985 xaddid1 9986 xnegdi 9992 xpncan 9995 xleadd1a 9997 xltadd1 10000 xposdif 10006 xrmaxrecl 11599 isxmet2d 14853 |
| Copyright terms: Public domain | W3C validator |