![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > renemnf | Unicode version |
Description: No real equals minus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
renemnf |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfnre 8062 |
. . . 4
![]() ![]() ![]() ![]() | |
2 | 1 | neli 2461 |
. . 3
![]() ![]() ![]() ![]() ![]() |
3 | eleq1 2256 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | mtbiri 676 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | necon2ai 2418 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-uni 3836 df-pnf 8056 df-mnf 8057 |
This theorem is referenced by: renemnfd 8071 renfdisj 8079 ltxrlt 8085 xrnemnf 9843 xrlttri3 9863 ngtmnft 9883 xrrebnd 9885 rexneg 9896 xrmnfdc 9909 rexadd 9918 xaddnemnf 9923 xaddcom 9927 xaddid1 9928 xnegdi 9934 xpncan 9937 xleadd1a 9939 xltadd1 9942 xposdif 9948 xrmaxrecl 11398 isxmet2d 14516 |
Copyright terms: Public domain | W3C validator |