ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm54.43 Unicode version

Theorem pm54.43 7203
Description: Theorem *54.43 of [WhiteheadRussell] p. 360. (Contributed by NM, 4-Apr-2007.)
Assertion
Ref Expression
pm54.43  |-  ( ( A  ~~  1o  /\  B  ~~  1o )  -> 
( ( A  i^i  B )  =  (/)  <->  ( A  u.  B )  ~~  2o ) )

Proof of Theorem pm54.43
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1on 6438 . . . . . . . 8  |-  1o  e.  On
21elexi 2761 . . . . . . 7  |-  1o  e.  _V
32ensn1 6810 . . . . . 6  |-  { 1o }  ~~  1o
43ensymi 6796 . . . . 5  |-  1o  ~~  { 1o }
5 entr 6798 . . . . 5  |-  ( ( B  ~~  1o  /\  1o  ~~  { 1o }
)  ->  B  ~~  { 1o } )
64, 5mpan2 425 . . . 4  |-  ( B 
~~  1o  ->  B  ~~  { 1o } )
71onirri 4554 . . . . . . 7  |-  -.  1o  e.  1o
8 disjsn 3666 . . . . . . 7  |-  ( ( 1o  i^i  { 1o } )  =  (/)  <->  -.  1o  e.  1o )
97, 8mpbir 146 . . . . . 6  |-  ( 1o 
i^i  { 1o } )  =  (/)
10 unen 6830 . . . . . 6  |-  ( ( ( A  ~~  1o  /\  B  ~~  { 1o } )  /\  (
( A  i^i  B
)  =  (/)  /\  ( 1o  i^i  { 1o }
)  =  (/) ) )  ->  ( A  u.  B )  ~~  ( 1o  u.  { 1o }
) )
119, 10mpanr2 438 . . . . 5  |-  ( ( ( A  ~~  1o  /\  B  ~~  { 1o } )  /\  ( A  i^i  B )  =  (/) )  ->  ( A  u.  B )  ~~  ( 1o  u.  { 1o } ) )
1211ex 115 . . . 4  |-  ( ( A  ~~  1o  /\  B  ~~  { 1o }
)  ->  ( ( A  i^i  B )  =  (/)  ->  ( A  u.  B )  ~~  ( 1o  u.  { 1o }
) ) )
136, 12sylan2 286 . . 3  |-  ( ( A  ~~  1o  /\  B  ~~  1o )  -> 
( ( A  i^i  B )  =  (/)  ->  ( A  u.  B )  ~~  ( 1o  u.  { 1o } ) ) )
14 df-2o 6432 . . . . 5  |-  2o  =  suc  1o
15 df-suc 4383 . . . . 5  |-  suc  1o  =  ( 1o  u.  { 1o } )
1614, 15eqtri 2208 . . . 4  |-  2o  =  ( 1o  u.  { 1o } )
1716breq2i 4023 . . 3  |-  ( ( A  u.  B ) 
~~  2o  <->  ( A  u.  B )  ~~  ( 1o  u.  { 1o }
) )
1813, 17imbitrrdi 162 . 2  |-  ( ( A  ~~  1o  /\  B  ~~  1o )  -> 
( ( A  i^i  B )  =  (/)  ->  ( A  u.  B )  ~~  2o ) )
19 en1 6813 . . 3  |-  ( A 
~~  1o  <->  E. x  A  =  { x } )
20 en1 6813 . . 3  |-  ( B 
~~  1o  <->  E. y  B  =  { y } )
21 1nen2 6875 . . . . . . . . . . . . 13  |-  -.  1o  ~~  2o
2221a1i 9 . . . . . . . . . . . 12  |-  ( x  =  y  ->  -.  1o  ~~  2o )
23 sneq 3615 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  { x }  =  { y } )
2423uneq2d 3301 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  ( { x }  u.  { x } )  =  ( { x }  u.  { y } ) )
25 unidm 3290 . . . . . . . . . . . . . . . 16  |-  ( { x }  u.  {
x } )  =  { x }
2624, 25eqtr3di 2235 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  ( { x }  u.  { y } )  =  { x } )
27 vex 2752 . . . . . . . . . . . . . . . 16  |-  x  e. 
_V
2827ensn1 6810 . . . . . . . . . . . . . . 15  |-  { x }  ~~  1o
2926, 28eqbrtrdi 4054 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  ( { x }  u.  { y } )  ~~  1o )
3029ensymd 6797 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  1o  ~~  ( { x }  u.  { y } ) )
31 entr 6798 . . . . . . . . . . . . 13  |-  ( ( 1o  ~~  ( { x }  u.  {
y } )  /\  ( { x }  u.  { y } )  ~~  2o )  ->  1o  ~~  2o )
3230, 31sylan 283 . . . . . . . . . . . 12  |-  ( ( x  =  y  /\  ( { x }  u.  { y } )  ~~  2o )  ->  1o  ~~  2o )
3322, 32mtand 666 . . . . . . . . . . 11  |-  ( x  =  y  ->  -.  ( { x }  u.  { y } )  ~~  2o )
3433necon2ai 2411 . . . . . . . . . 10  |-  ( ( { x }  u.  { y } )  ~~  2o  ->  x  =/=  y
)
35 disjsn2 3667 . . . . . . . . . 10  |-  ( x  =/=  y  ->  ( { x }  i^i  { y } )  =  (/) )
3634, 35syl 14 . . . . . . . . 9  |-  ( ( { x }  u.  { y } )  ~~  2o  ->  ( { x }  i^i  { y } )  =  (/) )
3736a1i 9 . . . . . . . 8  |-  ( ( A  =  { x }  /\  B  =  {
y } )  -> 
( ( { x }  u.  { y } )  ~~  2o  ->  ( { x }  i^i  { y } )  =  (/) ) )
38 uneq12 3296 . . . . . . . . 9  |-  ( ( A  =  { x }  /\  B  =  {
y } )  -> 
( A  u.  B
)  =  ( { x }  u.  {
y } ) )
3938breq1d 4025 . . . . . . . 8  |-  ( ( A  =  { x }  /\  B  =  {
y } )  -> 
( ( A  u.  B )  ~~  2o  <->  ( { x }  u.  { y } )  ~~  2o ) )
40 ineq12 3343 . . . . . . . . 9  |-  ( ( A  =  { x }  /\  B  =  {
y } )  -> 
( A  i^i  B
)  =  ( { x }  i^i  {
y } ) )
4140eqeq1d 2196 . . . . . . . 8  |-  ( ( A  =  { x }  /\  B  =  {
y } )  -> 
( ( A  i^i  B )  =  (/)  <->  ( {
x }  i^i  {
y } )  =  (/) ) )
4237, 39, 413imtr4d 203 . . . . . . 7  |-  ( ( A  =  { x }  /\  B  =  {
y } )  -> 
( ( A  u.  B )  ~~  2o  ->  ( A  i^i  B
)  =  (/) ) )
4342ex 115 . . . . . 6  |-  ( A  =  { x }  ->  ( B  =  {
y }  ->  (
( A  u.  B
)  ~~  2o  ->  ( A  i^i  B )  =  (/) ) ) )
4443exlimdv 1829 . . . . 5  |-  ( A  =  { x }  ->  ( E. y  B  =  { y }  ->  ( ( A  u.  B )  ~~  2o  ->  ( A  i^i  B )  =  (/) ) ) )
4544exlimiv 1608 . . . 4  |-  ( E. x  A  =  {
x }  ->  ( E. y  B  =  { y }  ->  ( ( A  u.  B
)  ~~  2o  ->  ( A  i^i  B )  =  (/) ) ) )
4645imp 124 . . 3  |-  ( ( E. x  A  =  { x }  /\  E. y  B  =  {
y } )  -> 
( ( A  u.  B )  ~~  2o  ->  ( A  i^i  B
)  =  (/) ) )
4719, 20, 46syl2anb 291 . 2  |-  ( ( A  ~~  1o  /\  B  ~~  1o )  -> 
( ( A  u.  B )  ~~  2o  ->  ( A  i^i  B
)  =  (/) ) )
4818, 47impbid 129 1  |-  ( ( A  ~~  1o  /\  B  ~~  1o )  -> 
( ( A  i^i  B )  =  (/)  <->  ( A  u.  B )  ~~  2o ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1363   E.wex 1502    e. wcel 2158    =/= wne 2357    u. cun 3139    i^i cin 3140   (/)c0 3434   {csn 3604   class class class wbr 4015   Oncon0 4375   suc csuc 4377   1oc1o 6424   2oc2o 6425    ~~ cen 6752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-tr 4114  df-id 4305  df-iord 4378  df-on 4380  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-1o 6431  df-2o 6432  df-er 6549  df-en 6755
This theorem is referenced by:  pr2nelem  7204  dju1p1e2  7210
  Copyright terms: Public domain W3C validator