| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm54.43 | Unicode version | ||
| Description: Theorem *54.43 of [WhiteheadRussell] p. 360. (Contributed by NM, 4-Apr-2007.) |
| Ref | Expression |
|---|---|
| pm54.43 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 6490 |
. . . . . . . 8
| |
| 2 | 1 | elexi 2775 |
. . . . . . 7
|
| 3 | 2 | ensn1 6864 |
. . . . . 6
|
| 4 | 3 | ensymi 6850 |
. . . . 5
|
| 5 | entr 6852 |
. . . . 5
| |
| 6 | 4, 5 | mpan2 425 |
. . . 4
|
| 7 | 1 | onirri 4580 |
. . . . . . 7
|
| 8 | disjsn 3685 |
. . . . . . 7
| |
| 9 | 7, 8 | mpbir 146 |
. . . . . 6
|
| 10 | unen 6884 |
. . . . . 6
| |
| 11 | 9, 10 | mpanr2 438 |
. . . . 5
|
| 12 | 11 | ex 115 |
. . . 4
|
| 13 | 6, 12 | sylan2 286 |
. . 3
|
| 14 | df-2o 6484 |
. . . . 5
| |
| 15 | df-suc 4407 |
. . . . 5
| |
| 16 | 14, 15 | eqtri 2217 |
. . . 4
|
| 17 | 16 | breq2i 4042 |
. . 3
|
| 18 | 13, 17 | imbitrrdi 162 |
. 2
|
| 19 | en1 6867 |
. . 3
| |
| 20 | en1 6867 |
. . 3
| |
| 21 | 1nen2 6931 |
. . . . . . . . . . . . 13
| |
| 22 | 21 | a1i 9 |
. . . . . . . . . . . 12
|
| 23 | sneq 3634 |
. . . . . . . . . . . . . . . . 17
| |
| 24 | 23 | uneq2d 3318 |
. . . . . . . . . . . . . . . 16
|
| 25 | unidm 3307 |
. . . . . . . . . . . . . . . 16
| |
| 26 | 24, 25 | eqtr3di 2244 |
. . . . . . . . . . . . . . 15
|
| 27 | vex 2766 |
. . . . . . . . . . . . . . . 16
| |
| 28 | 27 | ensn1 6864 |
. . . . . . . . . . . . . . 15
|
| 29 | 26, 28 | eqbrtrdi 4073 |
. . . . . . . . . . . . . 14
|
| 30 | 29 | ensymd 6851 |
. . . . . . . . . . . . 13
|
| 31 | entr 6852 |
. . . . . . . . . . . . 13
| |
| 32 | 30, 31 | sylan 283 |
. . . . . . . . . . . 12
|
| 33 | 22, 32 | mtand 666 |
. . . . . . . . . . 11
|
| 34 | 33 | necon2ai 2421 |
. . . . . . . . . 10
|
| 35 | disjsn2 3686 |
. . . . . . . . . 10
| |
| 36 | 34, 35 | syl 14 |
. . . . . . . . 9
|
| 37 | 36 | a1i 9 |
. . . . . . . 8
|
| 38 | uneq12 3313 |
. . . . . . . . 9
| |
| 39 | 38 | breq1d 4044 |
. . . . . . . 8
|
| 40 | ineq12 3360 |
. . . . . . . . 9
| |
| 41 | 40 | eqeq1d 2205 |
. . . . . . . 8
|
| 42 | 37, 39, 41 | 3imtr4d 203 |
. . . . . . 7
|
| 43 | 42 | ex 115 |
. . . . . 6
|
| 44 | 43 | exlimdv 1833 |
. . . . 5
|
| 45 | 44 | exlimiv 1612 |
. . . 4
|
| 46 | 45 | imp 124 |
. . 3
|
| 47 | 19, 20, 46 | syl2anb 291 |
. 2
|
| 48 | 18, 47 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-1o 6483 df-2o 6484 df-er 6601 df-en 6809 |
| This theorem is referenced by: pr2nelem 7270 dju1p1e2 7276 |
| Copyright terms: Public domain | W3C validator |