| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm54.43 | Unicode version | ||
| Description: Theorem *54.43 of [WhiteheadRussell] p. 360. (Contributed by NM, 4-Apr-2007.) |
| Ref | Expression |
|---|---|
| pm54.43 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 6508 |
. . . . . . . 8
| |
| 2 | 1 | elexi 2783 |
. . . . . . 7
|
| 3 | 2 | ensn1 6887 |
. . . . . 6
|
| 4 | 3 | ensymi 6873 |
. . . . 5
|
| 5 | entr 6875 |
. . . . 5
| |
| 6 | 4, 5 | mpan2 425 |
. . . 4
|
| 7 | 1 | onirri 4590 |
. . . . . . 7
|
| 8 | disjsn 3694 |
. . . . . . 7
| |
| 9 | 7, 8 | mpbir 146 |
. . . . . 6
|
| 10 | unen 6907 |
. . . . . 6
| |
| 11 | 9, 10 | mpanr2 438 |
. . . . 5
|
| 12 | 11 | ex 115 |
. . . 4
|
| 13 | 6, 12 | sylan2 286 |
. . 3
|
| 14 | df-2o 6502 |
. . . . 5
| |
| 15 | df-suc 4417 |
. . . . 5
| |
| 16 | 14, 15 | eqtri 2225 |
. . . 4
|
| 17 | 16 | breq2i 4051 |
. . 3
|
| 18 | 13, 17 | imbitrrdi 162 |
. 2
|
| 19 | en1 6890 |
. . 3
| |
| 20 | en1 6890 |
. . 3
| |
| 21 | 1nen2 6957 |
. . . . . . . . . . . . 13
| |
| 22 | 21 | a1i 9 |
. . . . . . . . . . . 12
|
| 23 | sneq 3643 |
. . . . . . . . . . . . . . . . 17
| |
| 24 | 23 | uneq2d 3326 |
. . . . . . . . . . . . . . . 16
|
| 25 | unidm 3315 |
. . . . . . . . . . . . . . . 16
| |
| 26 | 24, 25 | eqtr3di 2252 |
. . . . . . . . . . . . . . 15
|
| 27 | vex 2774 |
. . . . . . . . . . . . . . . 16
| |
| 28 | 27 | ensn1 6887 |
. . . . . . . . . . . . . . 15
|
| 29 | 26, 28 | eqbrtrdi 4082 |
. . . . . . . . . . . . . 14
|
| 30 | 29 | ensymd 6874 |
. . . . . . . . . . . . 13
|
| 31 | entr 6875 |
. . . . . . . . . . . . 13
| |
| 32 | 30, 31 | sylan 283 |
. . . . . . . . . . . 12
|
| 33 | 22, 32 | mtand 666 |
. . . . . . . . . . 11
|
| 34 | 33 | necon2ai 2429 |
. . . . . . . . . 10
|
| 35 | disjsn2 3695 |
. . . . . . . . . 10
| |
| 36 | 34, 35 | syl 14 |
. . . . . . . . 9
|
| 37 | 36 | a1i 9 |
. . . . . . . 8
|
| 38 | uneq12 3321 |
. . . . . . . . 9
| |
| 39 | 38 | breq1d 4053 |
. . . . . . . 8
|
| 40 | ineq12 3368 |
. . . . . . . . 9
| |
| 41 | 40 | eqeq1d 2213 |
. . . . . . . 8
|
| 42 | 37, 39, 41 | 3imtr4d 203 |
. . . . . . 7
|
| 43 | 42 | ex 115 |
. . . . . 6
|
| 44 | 43 | exlimdv 1841 |
. . . . 5
|
| 45 | 44 | exlimiv 1620 |
. . . 4
|
| 46 | 45 | imp 124 |
. . 3
|
| 47 | 19, 20, 46 | syl2anb 291 |
. 2
|
| 48 | 18, 47 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-1o 6501 df-2o 6502 df-er 6619 df-en 6827 |
| This theorem is referenced by: pr2nelem 7298 dju1p1e2 7304 |
| Copyright terms: Public domain | W3C validator |