Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm54.43 | Unicode version |
Description: Theorem *54.43 of [WhiteheadRussell] p. 360. (Contributed by NM, 4-Apr-2007.) |
Ref | Expression |
---|---|
pm54.43 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 6391 | . . . . . . . 8 | |
2 | 1 | elexi 2738 | . . . . . . 7 |
3 | 2 | ensn1 6762 | . . . . . 6 |
4 | 3 | ensymi 6748 | . . . . 5 |
5 | entr 6750 | . . . . 5 | |
6 | 4, 5 | mpan2 422 | . . . 4 |
7 | 1 | onirri 4520 | . . . . . . 7 |
8 | disjsn 3638 | . . . . . . 7 | |
9 | 7, 8 | mpbir 145 | . . . . . 6 |
10 | unen 6782 | . . . . . 6 | |
11 | 9, 10 | mpanr2 435 | . . . . 5 |
12 | 11 | ex 114 | . . . 4 |
13 | 6, 12 | sylan2 284 | . . 3 |
14 | df-2o 6385 | . . . . 5 | |
15 | df-suc 4349 | . . . . 5 | |
16 | 14, 15 | eqtri 2186 | . . . 4 |
17 | 16 | breq2i 3990 | . . 3 |
18 | 13, 17 | syl6ibr 161 | . 2 |
19 | en1 6765 | . . 3 | |
20 | en1 6765 | . . 3 | |
21 | 1nen2 6827 | . . . . . . . . . . . . 13 | |
22 | 21 | a1i 9 | . . . . . . . . . . . 12 |
23 | sneq 3587 | . . . . . . . . . . . . . . . . 17 | |
24 | 23 | uneq2d 3276 | . . . . . . . . . . . . . . . 16 |
25 | unidm 3265 | . . . . . . . . . . . . . . . 16 | |
26 | 24, 25 | eqtr3di 2214 | . . . . . . . . . . . . . . 15 |
27 | vex 2729 | . . . . . . . . . . . . . . . 16 | |
28 | 27 | ensn1 6762 | . . . . . . . . . . . . . . 15 |
29 | 26, 28 | eqbrtrdi 4021 | . . . . . . . . . . . . . 14 |
30 | 29 | ensymd 6749 | . . . . . . . . . . . . 13 |
31 | entr 6750 | . . . . . . . . . . . . 13 | |
32 | 30, 31 | sylan 281 | . . . . . . . . . . . 12 |
33 | 22, 32 | mtand 655 | . . . . . . . . . . 11 |
34 | 33 | necon2ai 2390 | . . . . . . . . . 10 |
35 | disjsn2 3639 | . . . . . . . . . 10 | |
36 | 34, 35 | syl 14 | . . . . . . . . 9 |
37 | 36 | a1i 9 | . . . . . . . 8 |
38 | uneq12 3271 | . . . . . . . . 9 | |
39 | 38 | breq1d 3992 | . . . . . . . 8 |
40 | ineq12 3318 | . . . . . . . . 9 | |
41 | 40 | eqeq1d 2174 | . . . . . . . 8 |
42 | 37, 39, 41 | 3imtr4d 202 | . . . . . . 7 |
43 | 42 | ex 114 | . . . . . 6 |
44 | 43 | exlimdv 1807 | . . . . 5 |
45 | 44 | exlimiv 1586 | . . . 4 |
46 | 45 | imp 123 | . . 3 |
47 | 19, 20, 46 | syl2anb 289 | . 2 |
48 | 18, 47 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 wne 2336 cun 3114 cin 3115 c0 3409 csn 3576 class class class wbr 3982 con0 4341 csuc 4343 c1o 6377 c2o 6378 cen 6704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1o 6384 df-2o 6385 df-er 6501 df-en 6707 |
This theorem is referenced by: pr2nelem 7147 dju1p1e2 7153 |
Copyright terms: Public domain | W3C validator |