| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm54.43 | Unicode version | ||
| Description: Theorem *54.43 of [WhiteheadRussell] p. 360. (Contributed by NM, 4-Apr-2007.) |
| Ref | Expression |
|---|---|
| pm54.43 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 6509 |
. . . . . . . 8
| |
| 2 | 1 | elexi 2784 |
. . . . . . 7
|
| 3 | 2 | ensn1 6888 |
. . . . . 6
|
| 4 | 3 | ensymi 6874 |
. . . . 5
|
| 5 | entr 6876 |
. . . . 5
| |
| 6 | 4, 5 | mpan2 425 |
. . . 4
|
| 7 | 1 | onirri 4591 |
. . . . . . 7
|
| 8 | disjsn 3695 |
. . . . . . 7
| |
| 9 | 7, 8 | mpbir 146 |
. . . . . 6
|
| 10 | unen 6908 |
. . . . . 6
| |
| 11 | 9, 10 | mpanr2 438 |
. . . . 5
|
| 12 | 11 | ex 115 |
. . . 4
|
| 13 | 6, 12 | sylan2 286 |
. . 3
|
| 14 | df-2o 6503 |
. . . . 5
| |
| 15 | df-suc 4418 |
. . . . 5
| |
| 16 | 14, 15 | eqtri 2226 |
. . . 4
|
| 17 | 16 | breq2i 4052 |
. . 3
|
| 18 | 13, 17 | imbitrrdi 162 |
. 2
|
| 19 | en1 6891 |
. . 3
| |
| 20 | en1 6891 |
. . 3
| |
| 21 | 1nen2 6958 |
. . . . . . . . . . . . 13
| |
| 22 | 21 | a1i 9 |
. . . . . . . . . . . 12
|
| 23 | sneq 3644 |
. . . . . . . . . . . . . . . . 17
| |
| 24 | 23 | uneq2d 3327 |
. . . . . . . . . . . . . . . 16
|
| 25 | unidm 3316 |
. . . . . . . . . . . . . . . 16
| |
| 26 | 24, 25 | eqtr3di 2253 |
. . . . . . . . . . . . . . 15
|
| 27 | vex 2775 |
. . . . . . . . . . . . . . . 16
| |
| 28 | 27 | ensn1 6888 |
. . . . . . . . . . . . . . 15
|
| 29 | 26, 28 | eqbrtrdi 4083 |
. . . . . . . . . . . . . 14
|
| 30 | 29 | ensymd 6875 |
. . . . . . . . . . . . 13
|
| 31 | entr 6876 |
. . . . . . . . . . . . 13
| |
| 32 | 30, 31 | sylan 283 |
. . . . . . . . . . . 12
|
| 33 | 22, 32 | mtand 667 |
. . . . . . . . . . 11
|
| 34 | 33 | necon2ai 2430 |
. . . . . . . . . 10
|
| 35 | disjsn2 3696 |
. . . . . . . . . 10
| |
| 36 | 34, 35 | syl 14 |
. . . . . . . . 9
|
| 37 | 36 | a1i 9 |
. . . . . . . 8
|
| 38 | uneq12 3322 |
. . . . . . . . 9
| |
| 39 | 38 | breq1d 4054 |
. . . . . . . 8
|
| 40 | ineq12 3369 |
. . . . . . . . 9
| |
| 41 | 40 | eqeq1d 2214 |
. . . . . . . 8
|
| 42 | 37, 39, 41 | 3imtr4d 203 |
. . . . . . 7
|
| 43 | 42 | ex 115 |
. . . . . 6
|
| 44 | 43 | exlimdv 1842 |
. . . . 5
|
| 45 | 44 | exlimiv 1621 |
. . . 4
|
| 46 | 45 | imp 124 |
. . 3
|
| 47 | 19, 20, 46 | syl2anb 291 |
. 2
|
| 48 | 18, 47 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-1o 6502 df-2o 6503 df-er 6620 df-en 6828 |
| This theorem is referenced by: pr2nelem 7299 dju1p1e2 7305 |
| Copyright terms: Public domain | W3C validator |