| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm54.43 | Unicode version | ||
| Description: Theorem *54.43 of [WhiteheadRussell] p. 360. (Contributed by NM, 4-Apr-2007.) |
| Ref | Expression |
|---|---|
| pm54.43 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 6532 |
. . . . . . . 8
| |
| 2 | 1 | elexi 2789 |
. . . . . . 7
|
| 3 | 2 | ensn1 6911 |
. . . . . 6
|
| 4 | 3 | ensymi 6897 |
. . . . 5
|
| 5 | entr 6899 |
. . . . 5
| |
| 6 | 4, 5 | mpan2 425 |
. . . 4
|
| 7 | 1 | onirri 4609 |
. . . . . . 7
|
| 8 | disjsn 3705 |
. . . . . . 7
| |
| 9 | 7, 8 | mpbir 146 |
. . . . . 6
|
| 10 | unen 6932 |
. . . . . 6
| |
| 11 | 9, 10 | mpanr2 438 |
. . . . 5
|
| 12 | 11 | ex 115 |
. . . 4
|
| 13 | 6, 12 | sylan2 286 |
. . 3
|
| 14 | df-2o 6526 |
. . . . 5
| |
| 15 | df-suc 4436 |
. . . . 5
| |
| 16 | 14, 15 | eqtri 2228 |
. . . 4
|
| 17 | 16 | breq2i 4067 |
. . 3
|
| 18 | 13, 17 | imbitrrdi 162 |
. 2
|
| 19 | en1 6914 |
. . 3
| |
| 20 | en1 6914 |
. . 3
| |
| 21 | 1nen2 6983 |
. . . . . . . . . . . . 13
| |
| 22 | 21 | a1i 9 |
. . . . . . . . . . . 12
|
| 23 | sneq 3654 |
. . . . . . . . . . . . . . . . 17
| |
| 24 | 23 | uneq2d 3335 |
. . . . . . . . . . . . . . . 16
|
| 25 | unidm 3324 |
. . . . . . . . . . . . . . . 16
| |
| 26 | 24, 25 | eqtr3di 2255 |
. . . . . . . . . . . . . . 15
|
| 27 | vex 2779 |
. . . . . . . . . . . . . . . 16
| |
| 28 | 27 | ensn1 6911 |
. . . . . . . . . . . . . . 15
|
| 29 | 26, 28 | eqbrtrdi 4098 |
. . . . . . . . . . . . . 14
|
| 30 | 29 | ensymd 6898 |
. . . . . . . . . . . . 13
|
| 31 | entr 6899 |
. . . . . . . . . . . . 13
| |
| 32 | 30, 31 | sylan 283 |
. . . . . . . . . . . 12
|
| 33 | 22, 32 | mtand 667 |
. . . . . . . . . . 11
|
| 34 | 33 | necon2ai 2432 |
. . . . . . . . . 10
|
| 35 | disjsn2 3706 |
. . . . . . . . . 10
| |
| 36 | 34, 35 | syl 14 |
. . . . . . . . 9
|
| 37 | 36 | a1i 9 |
. . . . . . . 8
|
| 38 | uneq12 3330 |
. . . . . . . . 9
| |
| 39 | 38 | breq1d 4069 |
. . . . . . . 8
|
| 40 | ineq12 3377 |
. . . . . . . . 9
| |
| 41 | 40 | eqeq1d 2216 |
. . . . . . . 8
|
| 42 | 37, 39, 41 | 3imtr4d 203 |
. . . . . . 7
|
| 43 | 42 | ex 115 |
. . . . . 6
|
| 44 | 43 | exlimdv 1843 |
. . . . 5
|
| 45 | 44 | exlimiv 1622 |
. . . 4
|
| 46 | 45 | imp 124 |
. . 3
|
| 47 | 19, 20, 46 | syl2anb 291 |
. 2
|
| 48 | 18, 47 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-1o 6525 df-2o 6526 df-er 6643 df-en 6851 |
| This theorem is referenced by: pr2nelem 7325 dju1p1e2 7336 |
| Copyright terms: Public domain | W3C validator |