Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm54.43 | Unicode version |
Description: Theorem *54.43 of [WhiteheadRussell] p. 360. (Contributed by NM, 4-Apr-2007.) |
Ref | Expression |
---|---|
pm54.43 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 6360 | . . . . . . . 8 | |
2 | 1 | elexi 2721 | . . . . . . 7 |
3 | 2 | ensn1 6730 | . . . . . 6 |
4 | 3 | ensymi 6716 | . . . . 5 |
5 | entr 6718 | . . . . 5 | |
6 | 4, 5 | mpan2 422 | . . . 4 |
7 | 1 | onirri 4496 | . . . . . . 7 |
8 | disjsn 3617 | . . . . . . 7 | |
9 | 7, 8 | mpbir 145 | . . . . . 6 |
10 | unen 6750 | . . . . . 6 | |
11 | 9, 10 | mpanr2 435 | . . . . 5 |
12 | 11 | ex 114 | . . . 4 |
13 | 6, 12 | sylan2 284 | . . 3 |
14 | df-2o 6354 | . . . . 5 | |
15 | df-suc 4326 | . . . . 5 | |
16 | 14, 15 | eqtri 2175 | . . . 4 |
17 | 16 | breq2i 3969 | . . 3 |
18 | 13, 17 | syl6ibr 161 | . 2 |
19 | en1 6733 | . . 3 | |
20 | en1 6733 | . . 3 | |
21 | 1nen2 6795 | . . . . . . . . . . . . 13 | |
22 | 21 | a1i 9 | . . . . . . . . . . . 12 |
23 | unidm 3246 | . . . . . . . . . . . . . . . 16 | |
24 | sneq 3567 | . . . . . . . . . . . . . . . . 17 | |
25 | 24 | uneq2d 3257 | . . . . . . . . . . . . . . . 16 |
26 | 23, 25 | syl5reqr 2202 | . . . . . . . . . . . . . . 15 |
27 | vex 2712 | . . . . . . . . . . . . . . . 16 | |
28 | 27 | ensn1 6730 | . . . . . . . . . . . . . . 15 |
29 | 26, 28 | eqbrtrdi 3999 | . . . . . . . . . . . . . 14 |
30 | 29 | ensymd 6717 | . . . . . . . . . . . . 13 |
31 | entr 6718 | . . . . . . . . . . . . 13 | |
32 | 30, 31 | sylan 281 | . . . . . . . . . . . 12 |
33 | 22, 32 | mtand 655 | . . . . . . . . . . 11 |
34 | 33 | necon2ai 2378 | . . . . . . . . . 10 |
35 | disjsn2 3618 | . . . . . . . . . 10 | |
36 | 34, 35 | syl 14 | . . . . . . . . 9 |
37 | 36 | a1i 9 | . . . . . . . 8 |
38 | uneq12 3252 | . . . . . . . . 9 | |
39 | 38 | breq1d 3971 | . . . . . . . 8 |
40 | ineq12 3299 | . . . . . . . . 9 | |
41 | 40 | eqeq1d 2163 | . . . . . . . 8 |
42 | 37, 39, 41 | 3imtr4d 202 | . . . . . . 7 |
43 | 42 | ex 114 | . . . . . 6 |
44 | 43 | exlimdv 1796 | . . . . 5 |
45 | 44 | exlimiv 1575 | . . . 4 |
46 | 45 | imp 123 | . . 3 |
47 | 19, 20, 46 | syl2anb 289 | . 2 |
48 | 18, 47 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1332 wex 1469 wcel 2125 wne 2324 cun 3096 cin 3097 c0 3390 csn 3556 class class class wbr 3961 con0 4318 csuc 4320 c1o 6346 c2o 6347 cen 6672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-iinf 4541 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-br 3962 df-opab 4022 df-tr 4059 df-id 4248 df-iord 4321 df-on 4323 df-suc 4326 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-1o 6353 df-2o 6354 df-er 6469 df-en 6675 |
This theorem is referenced by: pr2nelem 7105 dju1p1e2 7111 |
Copyright terms: Public domain | W3C validator |