ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm54.43 Unicode version

Theorem pm54.43 7183
Description: Theorem *54.43 of [WhiteheadRussell] p. 360. (Contributed by NM, 4-Apr-2007.)
Assertion
Ref Expression
pm54.43  |-  ( ( A  ~~  1o  /\  B  ~~  1o )  -> 
( ( A  i^i  B )  =  (/)  <->  ( A  u.  B )  ~~  2o ) )

Proof of Theorem pm54.43
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1on 6418 . . . . . . . 8  |-  1o  e.  On
21elexi 2749 . . . . . . 7  |-  1o  e.  _V
32ensn1 6790 . . . . . 6  |-  { 1o }  ~~  1o
43ensymi 6776 . . . . 5  |-  1o  ~~  { 1o }
5 entr 6778 . . . . 5  |-  ( ( B  ~~  1o  /\  1o  ~~  { 1o }
)  ->  B  ~~  { 1o } )
64, 5mpan2 425 . . . 4  |-  ( B 
~~  1o  ->  B  ~~  { 1o } )
71onirri 4539 . . . . . . 7  |-  -.  1o  e.  1o
8 disjsn 3653 . . . . . . 7  |-  ( ( 1o  i^i  { 1o } )  =  (/)  <->  -.  1o  e.  1o )
97, 8mpbir 146 . . . . . 6  |-  ( 1o 
i^i  { 1o } )  =  (/)
10 unen 6810 . . . . . 6  |-  ( ( ( A  ~~  1o  /\  B  ~~  { 1o } )  /\  (
( A  i^i  B
)  =  (/)  /\  ( 1o  i^i  { 1o }
)  =  (/) ) )  ->  ( A  u.  B )  ~~  ( 1o  u.  { 1o }
) )
119, 10mpanr2 438 . . . . 5  |-  ( ( ( A  ~~  1o  /\  B  ~~  { 1o } )  /\  ( A  i^i  B )  =  (/) )  ->  ( A  u.  B )  ~~  ( 1o  u.  { 1o } ) )
1211ex 115 . . . 4  |-  ( ( A  ~~  1o  /\  B  ~~  { 1o }
)  ->  ( ( A  i^i  B )  =  (/)  ->  ( A  u.  B )  ~~  ( 1o  u.  { 1o }
) ) )
136, 12sylan2 286 . . 3  |-  ( ( A  ~~  1o  /\  B  ~~  1o )  -> 
( ( A  i^i  B )  =  (/)  ->  ( A  u.  B )  ~~  ( 1o  u.  { 1o } ) ) )
14 df-2o 6412 . . . . 5  |-  2o  =  suc  1o
15 df-suc 4368 . . . . 5  |-  suc  1o  =  ( 1o  u.  { 1o } )
1614, 15eqtri 2198 . . . 4  |-  2o  =  ( 1o  u.  { 1o } )
1716breq2i 4008 . . 3  |-  ( ( A  u.  B ) 
~~  2o  <->  ( A  u.  B )  ~~  ( 1o  u.  { 1o }
) )
1813, 17syl6ibr 162 . 2  |-  ( ( A  ~~  1o  /\  B  ~~  1o )  -> 
( ( A  i^i  B )  =  (/)  ->  ( A  u.  B )  ~~  2o ) )
19 en1 6793 . . 3  |-  ( A 
~~  1o  <->  E. x  A  =  { x } )
20 en1 6793 . . 3  |-  ( B 
~~  1o  <->  E. y  B  =  { y } )
21 1nen2 6855 . . . . . . . . . . . . 13  |-  -.  1o  ~~  2o
2221a1i 9 . . . . . . . . . . . 12  |-  ( x  =  y  ->  -.  1o  ~~  2o )
23 sneq 3602 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  { x }  =  { y } )
2423uneq2d 3289 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  ( { x }  u.  { x } )  =  ( { x }  u.  { y } ) )
25 unidm 3278 . . . . . . . . . . . . . . . 16  |-  ( { x }  u.  {
x } )  =  { x }
2624, 25eqtr3di 2225 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  ( { x }  u.  { y } )  =  { x } )
27 vex 2740 . . . . . . . . . . . . . . . 16  |-  x  e. 
_V
2827ensn1 6790 . . . . . . . . . . . . . . 15  |-  { x }  ~~  1o
2926, 28eqbrtrdi 4039 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  ( { x }  u.  { y } )  ~~  1o )
3029ensymd 6777 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  1o  ~~  ( { x }  u.  { y } ) )
31 entr 6778 . . . . . . . . . . . . 13  |-  ( ( 1o  ~~  ( { x }  u.  {
y } )  /\  ( { x }  u.  { y } )  ~~  2o )  ->  1o  ~~  2o )
3230, 31sylan 283 . . . . . . . . . . . 12  |-  ( ( x  =  y  /\  ( { x }  u.  { y } )  ~~  2o )  ->  1o  ~~  2o )
3322, 32mtand 665 . . . . . . . . . . 11  |-  ( x  =  y  ->  -.  ( { x }  u.  { y } )  ~~  2o )
3433necon2ai 2401 . . . . . . . . . 10  |-  ( ( { x }  u.  { y } )  ~~  2o  ->  x  =/=  y
)
35 disjsn2 3654 . . . . . . . . . 10  |-  ( x  =/=  y  ->  ( { x }  i^i  { y } )  =  (/) )
3634, 35syl 14 . . . . . . . . 9  |-  ( ( { x }  u.  { y } )  ~~  2o  ->  ( { x }  i^i  { y } )  =  (/) )
3736a1i 9 . . . . . . . 8  |-  ( ( A  =  { x }  /\  B  =  {
y } )  -> 
( ( { x }  u.  { y } )  ~~  2o  ->  ( { x }  i^i  { y } )  =  (/) ) )
38 uneq12 3284 . . . . . . . . 9  |-  ( ( A  =  { x }  /\  B  =  {
y } )  -> 
( A  u.  B
)  =  ( { x }  u.  {
y } ) )
3938breq1d 4010 . . . . . . . 8  |-  ( ( A  =  { x }  /\  B  =  {
y } )  -> 
( ( A  u.  B )  ~~  2o  <->  ( { x }  u.  { y } )  ~~  2o ) )
40 ineq12 3331 . . . . . . . . 9  |-  ( ( A  =  { x }  /\  B  =  {
y } )  -> 
( A  i^i  B
)  =  ( { x }  i^i  {
y } ) )
4140eqeq1d 2186 . . . . . . . 8  |-  ( ( A  =  { x }  /\  B  =  {
y } )  -> 
( ( A  i^i  B )  =  (/)  <->  ( {
x }  i^i  {
y } )  =  (/) ) )
4237, 39, 413imtr4d 203 . . . . . . 7  |-  ( ( A  =  { x }  /\  B  =  {
y } )  -> 
( ( A  u.  B )  ~~  2o  ->  ( A  i^i  B
)  =  (/) ) )
4342ex 115 . . . . . 6  |-  ( A  =  { x }  ->  ( B  =  {
y }  ->  (
( A  u.  B
)  ~~  2o  ->  ( A  i^i  B )  =  (/) ) ) )
4443exlimdv 1819 . . . . 5  |-  ( A  =  { x }  ->  ( E. y  B  =  { y }  ->  ( ( A  u.  B )  ~~  2o  ->  ( A  i^i  B )  =  (/) ) ) )
4544exlimiv 1598 . . . 4  |-  ( E. x  A  =  {
x }  ->  ( E. y  B  =  { y }  ->  ( ( A  u.  B
)  ~~  2o  ->  ( A  i^i  B )  =  (/) ) ) )
4645imp 124 . . 3  |-  ( ( E. x  A  =  { x }  /\  E. y  B  =  {
y } )  -> 
( ( A  u.  B )  ~~  2o  ->  ( A  i^i  B
)  =  (/) ) )
4719, 20, 46syl2anb 291 . 2  |-  ( ( A  ~~  1o  /\  B  ~~  1o )  -> 
( ( A  u.  B )  ~~  2o  ->  ( A  i^i  B
)  =  (/) ) )
4818, 47impbid 129 1  |-  ( ( A  ~~  1o  /\  B  ~~  1o )  -> 
( ( A  i^i  B )  =  (/)  <->  ( A  u.  B )  ~~  2o ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   E.wex 1492    e. wcel 2148    =/= wne 2347    u. cun 3127    i^i cin 3128   (/)c0 3422   {csn 3591   class class class wbr 4000   Oncon0 4360   suc csuc 4362   1oc1o 6404   2oc2o 6405    ~~ cen 6732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-1o 6411  df-2o 6412  df-er 6529  df-en 6735
This theorem is referenced by:  pr2nelem  7184  dju1p1e2  7190
  Copyright terms: Public domain W3C validator