ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm54.43 Unicode version

Theorem pm54.43 7298
Description: Theorem *54.43 of [WhiteheadRussell] p. 360. (Contributed by NM, 4-Apr-2007.)
Assertion
Ref Expression
pm54.43  |-  ( ( A  ~~  1o  /\  B  ~~  1o )  -> 
( ( A  i^i  B )  =  (/)  <->  ( A  u.  B )  ~~  2o ) )

Proof of Theorem pm54.43
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1on 6509 . . . . . . . 8  |-  1o  e.  On
21elexi 2784 . . . . . . 7  |-  1o  e.  _V
32ensn1 6888 . . . . . 6  |-  { 1o }  ~~  1o
43ensymi 6874 . . . . 5  |-  1o  ~~  { 1o }
5 entr 6876 . . . . 5  |-  ( ( B  ~~  1o  /\  1o  ~~  { 1o }
)  ->  B  ~~  { 1o } )
64, 5mpan2 425 . . . 4  |-  ( B 
~~  1o  ->  B  ~~  { 1o } )
71onirri 4591 . . . . . . 7  |-  -.  1o  e.  1o
8 disjsn 3695 . . . . . . 7  |-  ( ( 1o  i^i  { 1o } )  =  (/)  <->  -.  1o  e.  1o )
97, 8mpbir 146 . . . . . 6  |-  ( 1o 
i^i  { 1o } )  =  (/)
10 unen 6908 . . . . . 6  |-  ( ( ( A  ~~  1o  /\  B  ~~  { 1o } )  /\  (
( A  i^i  B
)  =  (/)  /\  ( 1o  i^i  { 1o }
)  =  (/) ) )  ->  ( A  u.  B )  ~~  ( 1o  u.  { 1o }
) )
119, 10mpanr2 438 . . . . 5  |-  ( ( ( A  ~~  1o  /\  B  ~~  { 1o } )  /\  ( A  i^i  B )  =  (/) )  ->  ( A  u.  B )  ~~  ( 1o  u.  { 1o } ) )
1211ex 115 . . . 4  |-  ( ( A  ~~  1o  /\  B  ~~  { 1o }
)  ->  ( ( A  i^i  B )  =  (/)  ->  ( A  u.  B )  ~~  ( 1o  u.  { 1o }
) ) )
136, 12sylan2 286 . . 3  |-  ( ( A  ~~  1o  /\  B  ~~  1o )  -> 
( ( A  i^i  B )  =  (/)  ->  ( A  u.  B )  ~~  ( 1o  u.  { 1o } ) ) )
14 df-2o 6503 . . . . 5  |-  2o  =  suc  1o
15 df-suc 4418 . . . . 5  |-  suc  1o  =  ( 1o  u.  { 1o } )
1614, 15eqtri 2226 . . . 4  |-  2o  =  ( 1o  u.  { 1o } )
1716breq2i 4052 . . 3  |-  ( ( A  u.  B ) 
~~  2o  <->  ( A  u.  B )  ~~  ( 1o  u.  { 1o }
) )
1813, 17imbitrrdi 162 . 2  |-  ( ( A  ~~  1o  /\  B  ~~  1o )  -> 
( ( A  i^i  B )  =  (/)  ->  ( A  u.  B )  ~~  2o ) )
19 en1 6891 . . 3  |-  ( A 
~~  1o  <->  E. x  A  =  { x } )
20 en1 6891 . . 3  |-  ( B 
~~  1o  <->  E. y  B  =  { y } )
21 1nen2 6958 . . . . . . . . . . . . 13  |-  -.  1o  ~~  2o
2221a1i 9 . . . . . . . . . . . 12  |-  ( x  =  y  ->  -.  1o  ~~  2o )
23 sneq 3644 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  { x }  =  { y } )
2423uneq2d 3327 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  ( { x }  u.  { x } )  =  ( { x }  u.  { y } ) )
25 unidm 3316 . . . . . . . . . . . . . . . 16  |-  ( { x }  u.  {
x } )  =  { x }
2624, 25eqtr3di 2253 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  ( { x }  u.  { y } )  =  { x } )
27 vex 2775 . . . . . . . . . . . . . . . 16  |-  x  e. 
_V
2827ensn1 6888 . . . . . . . . . . . . . . 15  |-  { x }  ~~  1o
2926, 28eqbrtrdi 4083 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  ( { x }  u.  { y } )  ~~  1o )
3029ensymd 6875 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  1o  ~~  ( { x }  u.  { y } ) )
31 entr 6876 . . . . . . . . . . . . 13  |-  ( ( 1o  ~~  ( { x }  u.  {
y } )  /\  ( { x }  u.  { y } )  ~~  2o )  ->  1o  ~~  2o )
3230, 31sylan 283 . . . . . . . . . . . 12  |-  ( ( x  =  y  /\  ( { x }  u.  { y } )  ~~  2o )  ->  1o  ~~  2o )
3322, 32mtand 667 . . . . . . . . . . 11  |-  ( x  =  y  ->  -.  ( { x }  u.  { y } )  ~~  2o )
3433necon2ai 2430 . . . . . . . . . 10  |-  ( ( { x }  u.  { y } )  ~~  2o  ->  x  =/=  y
)
35 disjsn2 3696 . . . . . . . . . 10  |-  ( x  =/=  y  ->  ( { x }  i^i  { y } )  =  (/) )
3634, 35syl 14 . . . . . . . . 9  |-  ( ( { x }  u.  { y } )  ~~  2o  ->  ( { x }  i^i  { y } )  =  (/) )
3736a1i 9 . . . . . . . 8  |-  ( ( A  =  { x }  /\  B  =  {
y } )  -> 
( ( { x }  u.  { y } )  ~~  2o  ->  ( { x }  i^i  { y } )  =  (/) ) )
38 uneq12 3322 . . . . . . . . 9  |-  ( ( A  =  { x }  /\  B  =  {
y } )  -> 
( A  u.  B
)  =  ( { x }  u.  {
y } ) )
3938breq1d 4054 . . . . . . . 8  |-  ( ( A  =  { x }  /\  B  =  {
y } )  -> 
( ( A  u.  B )  ~~  2o  <->  ( { x }  u.  { y } )  ~~  2o ) )
40 ineq12 3369 . . . . . . . . 9  |-  ( ( A  =  { x }  /\  B  =  {
y } )  -> 
( A  i^i  B
)  =  ( { x }  i^i  {
y } ) )
4140eqeq1d 2214 . . . . . . . 8  |-  ( ( A  =  { x }  /\  B  =  {
y } )  -> 
( ( A  i^i  B )  =  (/)  <->  ( {
x }  i^i  {
y } )  =  (/) ) )
4237, 39, 413imtr4d 203 . . . . . . 7  |-  ( ( A  =  { x }  /\  B  =  {
y } )  -> 
( ( A  u.  B )  ~~  2o  ->  ( A  i^i  B
)  =  (/) ) )
4342ex 115 . . . . . 6  |-  ( A  =  { x }  ->  ( B  =  {
y }  ->  (
( A  u.  B
)  ~~  2o  ->  ( A  i^i  B )  =  (/) ) ) )
4443exlimdv 1842 . . . . 5  |-  ( A  =  { x }  ->  ( E. y  B  =  { y }  ->  ( ( A  u.  B )  ~~  2o  ->  ( A  i^i  B )  =  (/) ) ) )
4544exlimiv 1621 . . . 4  |-  ( E. x  A  =  {
x }  ->  ( E. y  B  =  { y }  ->  ( ( A  u.  B
)  ~~  2o  ->  ( A  i^i  B )  =  (/) ) ) )
4645imp 124 . . 3  |-  ( ( E. x  A  =  { x }  /\  E. y  B  =  {
y } )  -> 
( ( A  u.  B )  ~~  2o  ->  ( A  i^i  B
)  =  (/) ) )
4719, 20, 46syl2anb 291 . 2  |-  ( ( A  ~~  1o  /\  B  ~~  1o )  -> 
( ( A  u.  B )  ~~  2o  ->  ( A  i^i  B
)  =  (/) ) )
4818, 47impbid 129 1  |-  ( ( A  ~~  1o  /\  B  ~~  1o )  -> 
( ( A  i^i  B )  =  (/)  <->  ( A  u.  B )  ~~  2o ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1515    e. wcel 2176    =/= wne 2376    u. cun 3164    i^i cin 3165   (/)c0 3460   {csn 3633   class class class wbr 4044   Oncon0 4410   suc csuc 4412   1oc1o 6495   2oc2o 6496    ~~ cen 6825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-1o 6502  df-2o 6503  df-er 6620  df-en 6828
This theorem is referenced by:  pr2nelem  7299  dju1p1e2  7305
  Copyright terms: Public domain W3C validator