![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > renepnf | Unicode version |
Description: No (finite) real equals plus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
renepnf |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnre 8002 |
. . . 4
![]() ![]() ![]() ![]() | |
2 | 1 | neli 2444 |
. . 3
![]() ![]() ![]() ![]() ![]() |
3 | eleq1 2240 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | mtbiri 675 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | necon2ai 2401 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-un 4435 ax-cnex 7905 ax-resscn 7906 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-rex 2461 df-rab 2464 df-v 2741 df-in 3137 df-ss 3144 df-pw 3579 df-uni 3812 df-pnf 7997 |
This theorem is referenced by: renepnfd 8011 renfdisj 8020 ltxrlt 8026 xrnepnf 9781 xrlttri3 9800 nltpnft 9817 xrrebnd 9822 rexneg 9833 xrpnfdc 9845 rexadd 9855 xaddnepnf 9861 xaddcom 9864 xaddid1 9865 xnn0xadd0 9870 xnegdi 9871 xpncan 9874 xleadd1a 9876 xltadd1 9879 xsubge0 9884 xposdif 9885 xleaddadd 9890 xrmaxrecl 11266 |
Copyright terms: Public domain | W3C validator |