| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > renepnf | Unicode version | ||
| Description: No (finite) real equals plus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) | 
| Ref | Expression | 
|---|---|
| renepnf | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pnfnre 8068 | 
. . . 4
 | |
| 2 | 1 | neli 2464 | 
. . 3
 | 
| 3 | eleq1 2259 | 
. . 3
 | |
| 4 | 2, 3 | mtbiri 676 | 
. 2
 | 
| 5 | 4 | necon2ai 2421 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-un 4468 ax-cnex 7970 ax-resscn 7971 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-rex 2481 df-rab 2484 df-v 2765 df-in 3163 df-ss 3170 df-pw 3607 df-uni 3840 df-pnf 8063 | 
| This theorem is referenced by: renepnfd 8077 renfdisj 8086 ltxrlt 8092 xrnepnf 9853 xrlttri3 9872 nltpnft 9889 xrrebnd 9894 rexneg 9905 xrpnfdc 9917 rexadd 9927 xaddnepnf 9933 xaddcom 9936 xaddid1 9937 xnn0xadd0 9942 xnegdi 9943 xpncan 9946 xleadd1a 9948 xltadd1 9951 xsubge0 9956 xposdif 9957 xleaddadd 9962 xrmaxrecl 11420 | 
| Copyright terms: Public domain | W3C validator |