ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  renepnf Unicode version

Theorem renepnf 8069
Description: No (finite) real equals plus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
renepnf  |-  ( A  e.  RR  ->  A  =/= +oo )

Proof of Theorem renepnf
StepHypRef Expression
1 pnfnre 8063 . . . 4  |- +oo  e/  RR
21neli 2461 . . 3  |-  -. +oo  e.  RR
3 eleq1 2256 . . 3  |-  ( A  = +oo  ->  ( A  e.  RR  <-> +oo  e.  RR ) )
42, 3mtbiri 676 . 2  |-  ( A  = +oo  ->  -.  A  e.  RR )
54necon2ai 2418 1  |-  ( A  e.  RR  ->  A  =/= +oo )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164    =/= wne 2364   RRcr 7873   +oocpnf 8053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-un 4465  ax-cnex 7965  ax-resscn 7966
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-rex 2478  df-rab 2481  df-v 2762  df-in 3160  df-ss 3167  df-pw 3604  df-uni 3837  df-pnf 8058
This theorem is referenced by:  renepnfd  8072  renfdisj  8081  ltxrlt  8087  xrnepnf  9847  xrlttri3  9866  nltpnft  9883  xrrebnd  9888  rexneg  9899  xrpnfdc  9911  rexadd  9921  xaddnepnf  9927  xaddcom  9930  xaddid1  9931  xnn0xadd0  9936  xnegdi  9937  xpncan  9940  xleadd1a  9942  xltadd1  9945  xsubge0  9950  xposdif  9951  xleaddadd  9956  xrmaxrecl  11401
  Copyright terms: Public domain W3C validator