| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > renepnf | Unicode version | ||
| Description: No (finite) real equals plus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| renepnf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnre 8071 |
. . . 4
| |
| 2 | 1 | neli 2464 |
. . 3
|
| 3 | eleq1 2259 |
. . 3
| |
| 4 | 2, 3 | mtbiri 676 |
. 2
|
| 5 | 4 | necon2ai 2421 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-un 4469 ax-cnex 7973 ax-resscn 7974 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-rex 2481 df-rab 2484 df-v 2765 df-in 3163 df-ss 3170 df-pw 3608 df-uni 3841 df-pnf 8066 |
| This theorem is referenced by: renepnfd 8080 renfdisj 8089 ltxrlt 8095 xrnepnf 9856 xrlttri3 9875 nltpnft 9892 xrrebnd 9897 rexneg 9908 xrpnfdc 9920 rexadd 9930 xaddnepnf 9936 xaddcom 9939 xaddid1 9940 xnn0xadd0 9945 xnegdi 9946 xpncan 9949 xleadd1a 9951 xltadd1 9954 xsubge0 9959 xposdif 9960 xleaddadd 9965 xrmaxrecl 11423 |
| Copyright terms: Public domain | W3C validator |