| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > renepnf | Unicode version | ||
| Description: No (finite) real equals plus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| renepnf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnre 8188 |
. . . 4
| |
| 2 | 1 | neli 2497 |
. . 3
|
| 3 | eleq1 2292 |
. . 3
| |
| 4 | 2, 3 | mtbiri 679 |
. 2
|
| 5 | 4 | necon2ai 2454 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-un 4524 ax-cnex 8090 ax-resscn 8091 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-rex 2514 df-rab 2517 df-v 2801 df-in 3203 df-ss 3210 df-pw 3651 df-uni 3889 df-pnf 8183 |
| This theorem is referenced by: renepnfd 8197 renfdisj 8206 ltxrlt 8212 xrnepnf 9974 xrlttri3 9993 nltpnft 10010 xrrebnd 10015 rexneg 10026 xrpnfdc 10038 rexadd 10048 xaddnepnf 10054 xaddcom 10057 xaddid1 10058 xnn0xadd0 10063 xnegdi 10064 xpncan 10067 xleadd1a 10069 xltadd1 10072 xsubge0 10077 xposdif 10078 xleaddadd 10083 xrmaxrecl 11766 |
| Copyright terms: Public domain | W3C validator |