| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > renepnf | Unicode version | ||
| Description: No (finite) real equals plus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| renepnf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnre 8085 |
. . . 4
| |
| 2 | 1 | neli 2464 |
. . 3
|
| 3 | eleq1 2259 |
. . 3
| |
| 4 | 2, 3 | mtbiri 676 |
. 2
|
| 5 | 4 | necon2ai 2421 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-un 4469 ax-cnex 7987 ax-resscn 7988 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-rex 2481 df-rab 2484 df-v 2765 df-in 3163 df-ss 3170 df-pw 3608 df-uni 3841 df-pnf 8080 |
| This theorem is referenced by: renepnfd 8094 renfdisj 8103 ltxrlt 8109 xrnepnf 9870 xrlttri3 9889 nltpnft 9906 xrrebnd 9911 rexneg 9922 xrpnfdc 9934 rexadd 9944 xaddnepnf 9950 xaddcom 9953 xaddid1 9954 xnn0xadd0 9959 xnegdi 9960 xpncan 9963 xleadd1a 9965 xltadd1 9968 xsubge0 9973 xposdif 9974 xleaddadd 9979 xrmaxrecl 11437 |
| Copyright terms: Public domain | W3C validator |