ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  renepnf Unicode version

Theorem renepnf 8074
Description: No (finite) real equals plus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
renepnf  |-  ( A  e.  RR  ->  A  =/= +oo )

Proof of Theorem renepnf
StepHypRef Expression
1 pnfnre 8068 . . . 4  |- +oo  e/  RR
21neli 2464 . . 3  |-  -. +oo  e.  RR
3 eleq1 2259 . . 3  |-  ( A  = +oo  ->  ( A  e.  RR  <-> +oo  e.  RR ) )
42, 3mtbiri 676 . 2  |-  ( A  = +oo  ->  -.  A  e.  RR )
54necon2ai 2421 1  |-  ( A  e.  RR  ->  A  =/= +oo )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167    =/= wne 2367   RRcr 7878   +oocpnf 8058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-un 4468  ax-cnex 7970  ax-resscn 7971
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-rex 2481  df-rab 2484  df-v 2765  df-in 3163  df-ss 3170  df-pw 3607  df-uni 3840  df-pnf 8063
This theorem is referenced by:  renepnfd  8077  renfdisj  8086  ltxrlt  8092  xrnepnf  9853  xrlttri3  9872  nltpnft  9889  xrrebnd  9894  rexneg  9905  xrpnfdc  9917  rexadd  9927  xaddnepnf  9933  xaddcom  9936  xaddid1  9937  xnn0xadd0  9942  xnegdi  9943  xpncan  9946  xleadd1a  9948  xltadd1  9951  xsubge0  9956  xposdif  9957  xleaddadd  9962  xrmaxrecl  11420
  Copyright terms: Public domain W3C validator