| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnne0 | Unicode version | ||
| Description: A positive integer is nonzero. (Contributed by NM, 27-Sep-1999.) |
| Ref | Expression |
|---|---|
| nnne0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nnn 9063 |
. . 3
| |
| 2 | eleq1 2268 |
. . 3
| |
| 3 | 1, 2 | mtbiri 677 |
. 2
|
| 4 | 3 | necon2ai 2430 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-pre-ltirr 8037 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-xp 4681 df-cnv 4683 df-iota 5232 df-fv 5279 df-ov 5947 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-inn 9037 |
| This theorem is referenced by: nnne0d 9081 divfnzn 9742 qreccl 9763 fzo1fzo0n0 10307 expnnval 10687 expnegap0 10692 hashnncl 10940 ef0lem 11971 dvdsval3 12102 nndivdvds 12107 modmulconst 12134 dvdsdivcl 12161 divalg2 12237 ndvdssub 12241 nndvdslegcd 12286 divgcdz 12292 divgcdnn 12296 gcdzeq 12343 eucalgf 12377 eucalginv 12378 lcmgcdlem 12399 qredeu 12419 cncongr1 12425 cncongr2 12426 divnumden 12518 divdenle 12519 phimullem 12547 hashgcdlem 12560 phisum 12563 prm23lt5 12586 pythagtriplem8 12595 pythagtriplem9 12596 pceu 12618 pccl 12622 pcdiv 12625 pcqcl 12629 pcdvds 12638 pcndvds 12640 pcndvds2 12642 pceq0 12645 pcz 12655 pcmpt 12666 fldivp1 12671 pcfac 12673 ennnfonelemjn 12773 mulgnn 13462 mulgnegnn 13468 znf1o 14413 znfi 14417 znhash 14418 znidomb 14420 znrrg 14422 dvexp2 15184 lgsval4a 15499 lgsabs1 15516 lgssq2 15518 |
| Copyright terms: Public domain | W3C validator |