Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnne0 | Unicode version |
Description: A positive integer is nonzero. (Contributed by NM, 27-Sep-1999.) |
Ref | Expression |
---|---|
nnne0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nnn 8905 | . . 3 | |
2 | eleq1 2233 | . . 3 | |
3 | 1, 2 | mtbiri 670 | . 2 |
4 | 3 | necon2ai 2394 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wcel 2141 wne 2340 cc0 7774 cn 8878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-pre-ltirr 7886 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-iota 5160 df-fv 5206 df-ov 5856 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-inn 8879 |
This theorem is referenced by: nnne0d 8923 divfnzn 9580 qreccl 9601 fzo1fzo0n0 10139 expnnval 10479 expnegap0 10484 hashnncl 10730 ef0lem 11623 dvdsval3 11753 nndivdvds 11758 modmulconst 11785 dvdsdivcl 11810 divalg2 11885 ndvdssub 11889 nndvdslegcd 11920 divgcdz 11926 divgcdnn 11930 gcdzeq 11977 eucalgf 12009 eucalginv 12010 lcmgcdlem 12031 qredeu 12051 cncongr1 12057 cncongr2 12058 divnumden 12150 divdenle 12151 phimullem 12179 hashgcdlem 12192 phisum 12194 prm23lt5 12217 pythagtriplem8 12226 pythagtriplem9 12227 pceu 12249 pccl 12253 pcdiv 12256 pcqcl 12260 pcdvds 12268 pcndvds 12270 pcndvds2 12272 pceq0 12275 pcz 12285 pcmpt 12295 fldivp1 12300 pcfac 12302 ennnfonelemjn 12357 dvexp2 13470 lgsval4a 13717 lgsabs1 13734 lgssq2 13736 |
Copyright terms: Public domain | W3C validator |