Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnne0 | Unicode version |
Description: A positive integer is nonzero. (Contributed by NM, 27-Sep-1999.) |
Ref | Expression |
---|---|
nnne0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nnn 8884 | . . 3 | |
2 | eleq1 2229 | . . 3 | |
3 | 1, 2 | mtbiri 665 | . 2 |
4 | 3 | necon2ai 2390 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wcel 2136 wne 2336 cc0 7753 cn 8857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-pre-ltirr 7865 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-iota 5153 df-fv 5196 df-ov 5845 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-inn 8858 |
This theorem is referenced by: nnne0d 8902 divfnzn 9559 qreccl 9580 fzo1fzo0n0 10118 expnnval 10458 expnegap0 10463 hashnncl 10709 ef0lem 11601 dvdsval3 11731 nndivdvds 11736 modmulconst 11763 dvdsdivcl 11788 divalg2 11863 ndvdssub 11867 nndvdslegcd 11898 divgcdz 11904 divgcdnn 11908 gcdzeq 11955 eucalgf 11987 eucalginv 11988 lcmgcdlem 12009 qredeu 12029 cncongr1 12035 cncongr2 12036 divnumden 12128 divdenle 12129 phimullem 12157 hashgcdlem 12170 phisum 12172 prm23lt5 12195 pythagtriplem8 12204 pythagtriplem9 12205 pceu 12227 pccl 12231 pcdiv 12234 pcqcl 12238 pcdvds 12246 pcndvds 12248 pcndvds2 12250 pceq0 12253 pcz 12263 pcmpt 12273 fldivp1 12278 pcfac 12280 ennnfonelemjn 12335 dvexp2 13316 lgsval4a 13563 lgsabs1 13580 lgssq2 13582 |
Copyright terms: Public domain | W3C validator |