| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnne0 | Unicode version | ||
| Description: A positive integer is nonzero. (Contributed by NM, 27-Sep-1999.) |
| Ref | Expression |
|---|---|
| nnne0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nnn 9065 |
. . 3
| |
| 2 | eleq1 2268 |
. . 3
| |
| 3 | 1, 2 | mtbiri 677 |
. 2
|
| 4 | 3 | necon2ai 2430 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-pre-ltirr 8039 ax-pre-lttrn 8041 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-xp 4682 df-cnv 4684 df-iota 5233 df-fv 5280 df-ov 5949 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-inn 9039 |
| This theorem is referenced by: nnne0d 9083 divfnzn 9744 qreccl 9765 fzo1fzo0n0 10309 expnnval 10689 expnegap0 10694 hashnncl 10942 ef0lem 12004 dvdsval3 12135 nndivdvds 12140 modmulconst 12167 dvdsdivcl 12194 divalg2 12270 ndvdssub 12274 nndvdslegcd 12319 divgcdz 12325 divgcdnn 12329 gcdzeq 12376 eucalgf 12410 eucalginv 12411 lcmgcdlem 12432 qredeu 12452 cncongr1 12458 cncongr2 12459 divnumden 12551 divdenle 12552 phimullem 12580 hashgcdlem 12593 phisum 12596 prm23lt5 12619 pythagtriplem8 12628 pythagtriplem9 12629 pceu 12651 pccl 12655 pcdiv 12658 pcqcl 12662 pcdvds 12671 pcndvds 12673 pcndvds2 12675 pceq0 12678 pcz 12688 pcmpt 12699 fldivp1 12704 pcfac 12706 ennnfonelemjn 12806 mulgnn 13495 mulgnegnn 13501 znf1o 14446 znfi 14450 znhash 14451 znidomb 14453 znrrg 14455 dvexp2 15217 lgsval4a 15532 lgsabs1 15549 lgssq2 15551 |
| Copyright terms: Public domain | W3C validator |