| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nnne0 | Unicode version | ||
| Description: A positive integer is nonzero. (Contributed by NM, 27-Sep-1999.) | 
| Ref | Expression | 
|---|---|
| nnne0 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0nnn 9017 | 
. . 3
 | |
| 2 | eleq1 2259 | 
. . 3
 | |
| 3 | 1, 2 | mtbiri 676 | 
. 2
 | 
| 4 | 3 | necon2ai 2421 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-iota 5219 df-fv 5266 df-ov 5925 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-inn 8991 | 
| This theorem is referenced by: nnne0d 9035 divfnzn 9695 qreccl 9716 fzo1fzo0n0 10259 expnnval 10634 expnegap0 10639 hashnncl 10887 ef0lem 11825 dvdsval3 11956 nndivdvds 11961 modmulconst 11988 dvdsdivcl 12015 divalg2 12091 ndvdssub 12095 nndvdslegcd 12132 divgcdz 12138 divgcdnn 12142 gcdzeq 12189 eucalgf 12223 eucalginv 12224 lcmgcdlem 12245 qredeu 12265 cncongr1 12271 cncongr2 12272 divnumden 12364 divdenle 12365 phimullem 12393 hashgcdlem 12406 phisum 12409 prm23lt5 12432 pythagtriplem8 12441 pythagtriplem9 12442 pceu 12464 pccl 12468 pcdiv 12471 pcqcl 12475 pcdvds 12484 pcndvds 12486 pcndvds2 12488 pceq0 12491 pcz 12501 pcmpt 12512 fldivp1 12517 pcfac 12519 ennnfonelemjn 12619 mulgnn 13256 mulgnegnn 13262 znf1o 14207 znfi 14211 znhash 14212 znidomb 14214 znrrg 14216 dvexp2 14948 lgsval4a 15263 lgsabs1 15280 lgssq2 15282 | 
| Copyright terms: Public domain | W3C validator |