| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnne0 | Unicode version | ||
| Description: A positive integer is nonzero. (Contributed by NM, 27-Sep-1999.) |
| Ref | Expression |
|---|---|
| nnne0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nnn 9034 |
. . 3
| |
| 2 | eleq1 2259 |
. . 3
| |
| 3 | 1, 2 | mtbiri 676 |
. 2
|
| 4 | 3 | necon2ai 2421 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-iota 5220 df-fv 5267 df-ov 5928 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-inn 9008 |
| This theorem is referenced by: nnne0d 9052 divfnzn 9712 qreccl 9733 fzo1fzo0n0 10276 expnnval 10651 expnegap0 10656 hashnncl 10904 ef0lem 11842 dvdsval3 11973 nndivdvds 11978 modmulconst 12005 dvdsdivcl 12032 divalg2 12108 ndvdssub 12112 nndvdslegcd 12157 divgcdz 12163 divgcdnn 12167 gcdzeq 12214 eucalgf 12248 eucalginv 12249 lcmgcdlem 12270 qredeu 12290 cncongr1 12296 cncongr2 12297 divnumden 12389 divdenle 12390 phimullem 12418 hashgcdlem 12431 phisum 12434 prm23lt5 12457 pythagtriplem8 12466 pythagtriplem9 12467 pceu 12489 pccl 12493 pcdiv 12496 pcqcl 12500 pcdvds 12509 pcndvds 12511 pcndvds2 12513 pceq0 12516 pcz 12526 pcmpt 12537 fldivp1 12542 pcfac 12544 ennnfonelemjn 12644 mulgnn 13332 mulgnegnn 13338 znf1o 14283 znfi 14287 znhash 14288 znidomb 14290 znrrg 14292 dvexp2 15032 lgsval4a 15347 lgsabs1 15364 lgssq2 15366 |
| Copyright terms: Public domain | W3C validator |