![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnne0 | Unicode version |
Description: A positive integer is nonzero. (Contributed by NM, 27-Sep-1999.) |
Ref | Expression |
---|---|
nnne0 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nnn 8657 |
. . 3
![]() ![]() ![]() ![]() ![]() | |
2 | eleq1 2177 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mtbiri 647 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | necon2ai 2336 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 ax-cnex 7636 ax-resscn 7637 ax-1re 7639 ax-addrcl 7642 ax-0lt1 7651 ax-0id 7653 ax-rnegex 7654 ax-pre-ltirr 7657 ax-pre-lttrn 7659 ax-pre-ltadd 7661 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-nel 2378 df-ral 2395 df-rex 2396 df-rab 2399 df-v 2659 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-int 3738 df-br 3896 df-opab 3950 df-xp 4505 df-cnv 4507 df-iota 5046 df-fv 5089 df-ov 5731 df-pnf 7726 df-mnf 7727 df-xr 7728 df-ltxr 7729 df-le 7730 df-inn 8631 |
This theorem is referenced by: nnne0d 8675 divfnzn 9315 qreccl 9336 fzo1fzo0n0 9853 expnnval 10189 expnegap0 10194 hashnncl 10435 ef0lem 11217 dvdsval3 11345 nndivdvds 11347 modmulconst 11373 dvdsdivcl 11396 divalg2 11471 ndvdssub 11475 nndvdslegcd 11502 divgcdz 11508 divgcdnn 11511 gcdzeq 11556 eucalgf 11582 eucalginv 11583 lcmgcdlem 11604 qredeu 11624 cncongr1 11630 cncongr2 11631 divnumden 11719 divdenle 11720 phimullem 11746 hashgcdlem 11748 ennnfonelemjn 11760 |
Copyright terms: Public domain | W3C validator |