| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnne0 | Unicode version | ||
| Description: A positive integer is nonzero. (Contributed by NM, 27-Sep-1999.) |
| Ref | Expression |
|---|---|
| nnne0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nnn 9098 |
. . 3
| |
| 2 | eleq1 2270 |
. . 3
| |
| 3 | 1, 2 | mtbiri 677 |
. 2
|
| 4 | 3 | necon2ai 2432 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-xp 4699 df-cnv 4701 df-iota 5251 df-fv 5298 df-ov 5970 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-inn 9072 |
| This theorem is referenced by: nnne0d 9116 divfnzn 9777 qreccl 9798 fzo1fzo0n0 10344 expnnval 10724 expnegap0 10729 hashnncl 10977 ef0lem 12086 dvdsval3 12217 nndivdvds 12222 modmulconst 12249 dvdsdivcl 12276 divalg2 12352 ndvdssub 12356 nndvdslegcd 12401 divgcdz 12407 divgcdnn 12411 gcdzeq 12458 eucalgf 12492 eucalginv 12493 lcmgcdlem 12514 qredeu 12534 cncongr1 12540 cncongr2 12541 divnumden 12633 divdenle 12634 phimullem 12662 hashgcdlem 12675 phisum 12678 prm23lt5 12701 pythagtriplem8 12710 pythagtriplem9 12711 pceu 12733 pccl 12737 pcdiv 12740 pcqcl 12744 pcdvds 12753 pcndvds 12755 pcndvds2 12757 pceq0 12760 pcz 12770 pcmpt 12781 fldivp1 12786 pcfac 12788 ennnfonelemjn 12888 mulgnn 13577 mulgnegnn 13583 znf1o 14528 znfi 14532 znhash 14533 znidomb 14535 znrrg 14537 dvexp2 15299 lgsval4a 15614 lgsabs1 15631 lgssq2 15633 |
| Copyright terms: Public domain | W3C validator |