Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-intexr Unicode version

Theorem bj-intexr 16229
Description: intexr 4233 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-intexr  |-  ( |^| A  e.  _V  ->  A  =/=  (/) )

Proof of Theorem bj-intexr
StepHypRef Expression
1 bj-vprc 16217 . . 3  |-  -.  _V  e.  _V
2 inteq 3925 . . . . 5  |-  ( A  =  (/)  ->  |^| A  =  |^| (/) )
3 int0 3936 . . . . 5  |-  |^| (/)  =  _V
42, 3eqtrdi 2278 . . . 4  |-  ( A  =  (/)  ->  |^| A  =  _V )
54eleq1d 2298 . . 3  |-  ( A  =  (/)  ->  ( |^| A  e.  _V  <->  _V  e.  _V ) )
61, 5mtbiri 679 . 2  |-  ( A  =  (/)  ->  -.  |^| A  e.  _V )
76necon2ai 2454 1  |-  ( |^| A  e.  _V  ->  A  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200    =/= wne 2400   _Vcvv 2799   (/)c0 3491   |^|cint 3922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-bdn 16138  ax-bdel 16142  ax-bdsep 16205
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-v 2801  df-dif 3199  df-nul 3492  df-int 3923
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator