| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ennnfonelemk | Unicode version | ||
| Description: Lemma for ennnfone 12642. (Contributed by Jim Kingdon, 15-Jul-2023.) | 
| Ref | Expression | 
|---|---|
| ennnfonelemk.f | 
 | 
| ennnfonelemk.k | 
 | 
| ennnfonelemk.n | 
 | 
| ennnfonelemk.j | 
 | 
| Ref | Expression | 
|---|---|
| ennnfonelemk | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpr 110 | 
. 2
 | |
| 2 | eqimss2 3238 | 
. . . 4
 | |
| 3 | 2 | adantl 277 | 
. . 3
 | 
| 4 | eqid 2196 | 
. . . . 5
 | |
| 5 | fveq2 5558 | 
. . . . . . . . 9
 | |
| 6 | 5 | neeq2d 2386 | 
. . . . . . . 8
 | 
| 7 | ennnfonelemk.j | 
. . . . . . . . 9
 | |
| 8 | 7 | adantr 276 | 
. . . . . . . 8
 | 
| 9 | simpr 110 | 
. . . . . . . . . 10
 | |
| 10 | ennnfonelemk.k | 
. . . . . . . . . . . 12
 | |
| 11 | 10 | adantr 276 | 
. . . . . . . . . . 11
 | 
| 12 | ennnfonelemk.n | 
. . . . . . . . . . . 12
 | |
| 13 | 12 | adantr 276 | 
. . . . . . . . . . 11
 | 
| 14 | nnsucsssuc 6550 | 
. . . . . . . . . . 11
 | |
| 15 | 11, 13, 14 | syl2anc 411 | 
. . . . . . . . . 10
 | 
| 16 | 9, 15 | mpbid 147 | 
. . . . . . . . 9
 | 
| 17 | peano2 4631 | 
. . . . . . . . . . 11
 | |
| 18 | nnord 4648 | 
. . . . . . . . . . 11
 | |
| 19 | 13, 17, 18 | 3syl 17 | 
. . . . . . . . . 10
 | 
| 20 | ordelsuc 4541 | 
. . . . . . . . . 10
 | |
| 21 | 11, 19, 20 | syl2anc 411 | 
. . . . . . . . 9
 | 
| 22 | 16, 21 | mpbird 167 | 
. . . . . . . 8
 | 
| 23 | 6, 8, 22 | rspcdva 2873 | 
. . . . . . 7
 | 
| 24 | 23 | neneqd 2388 | 
. . . . . 6
 | 
| 25 | 24 | ex 115 | 
. . . . 5
 | 
| 26 | 4, 25 | mt2i 645 | 
. . . 4
 | 
| 27 | 26 | adantr 276 | 
. . 3
 | 
| 28 | 3, 27 | pm2.21dd 621 | 
. 2
 | 
| 29 | 12 | adantr 276 | 
. . . . 5
 | 
| 30 | nnon 4646 | 
. . . . 5
 | |
| 31 | 29, 30 | syl 14 | 
. . . 4
 | 
| 32 | simpr 110 | 
. . . 4
 | |
| 33 | onelss 4422 | 
. . . 4
 | |
| 34 | 31, 32, 33 | sylc 62 | 
. . 3
 | 
| 35 | 26 | adantr 276 | 
. . 3
 | 
| 36 | 34, 35 | pm2.21dd 621 | 
. 2
 | 
| 37 | nntri3or 6551 | 
. . 3
 | |
| 38 | 12, 10, 37 | syl2anc 411 | 
. 2
 | 
| 39 | 1, 28, 36, 38 | mpjao3dan 1318 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-iota 5219 df-fv 5266 | 
| This theorem is referenced by: ennnfonelemex 12631 | 
| Copyright terms: Public domain | W3C validator |