ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemk Unicode version

Theorem ennnfonelemk 12333
Description: Lemma for ennnfone 12358. (Contributed by Jim Kingdon, 15-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemk.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemk.k  |-  ( ph  ->  K  e.  om )
ennnfonelemk.n  |-  ( ph  ->  N  e.  om )
ennnfonelemk.j  |-  ( ph  ->  A. j  e.  suc  N ( F `  K
)  =/=  ( F `
 j ) )
Assertion
Ref Expression
ennnfonelemk  |-  ( ph  ->  N  e.  K )
Distinct variable groups:    j, F    j, K    j, N
Allowed substitution hints:    ph( j)    A( j)

Proof of Theorem ennnfonelemk
StepHypRef Expression
1 simpr 109 . 2  |-  ( (
ph  /\  N  e.  K )  ->  N  e.  K )
2 eqimss2 3197 . . . 4  |-  ( N  =  K  ->  K  C_  N )
32adantl 275 . . 3  |-  ( (
ph  /\  N  =  K )  ->  K  C_  N )
4 eqid 2165 . . . . 5  |-  ( F `
 K )  =  ( F `  K
)
5 fveq2 5486 . . . . . . . . 9  |-  ( j  =  K  ->  ( F `  j )  =  ( F `  K ) )
65neeq2d 2355 . . . . . . . 8  |-  ( j  =  K  ->  (
( F `  K
)  =/=  ( F `
 j )  <->  ( F `  K )  =/=  ( F `  K )
) )
7 ennnfonelemk.j . . . . . . . . 9  |-  ( ph  ->  A. j  e.  suc  N ( F `  K
)  =/=  ( F `
 j ) )
87adantr 274 . . . . . . . 8  |-  ( (
ph  /\  K  C_  N
)  ->  A. j  e.  suc  N ( F `
 K )  =/=  ( F `  j
) )
9 simpr 109 . . . . . . . . . 10  |-  ( (
ph  /\  K  C_  N
)  ->  K  C_  N
)
10 ennnfonelemk.k . . . . . . . . . . . 12  |-  ( ph  ->  K  e.  om )
1110adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  K  C_  N
)  ->  K  e.  om )
12 ennnfonelemk.n . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  om )
1312adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  K  C_  N
)  ->  N  e.  om )
14 nnsucsssuc 6460 . . . . . . . . . . 11  |-  ( ( K  e.  om  /\  N  e.  om )  ->  ( K  C_  N  <->  suc 
K  C_  suc  N ) )
1511, 13, 14syl2anc 409 . . . . . . . . . 10  |-  ( (
ph  /\  K  C_  N
)  ->  ( K  C_  N  <->  suc  K  C_  suc  N ) )
169, 15mpbid 146 . . . . . . . . 9  |-  ( (
ph  /\  K  C_  N
)  ->  suc  K  C_  suc  N )
17 peano2 4572 . . . . . . . . . . 11  |-  ( N  e.  om  ->  suc  N  e.  om )
18 nnord 4589 . . . . . . . . . . 11  |-  ( suc 
N  e.  om  ->  Ord 
suc  N )
1913, 17, 183syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  K  C_  N
)  ->  Ord  suc  N
)
20 ordelsuc 4482 . . . . . . . . . 10  |-  ( ( K  e.  om  /\  Ord  suc  N )  -> 
( K  e.  suc  N  <->  suc  K  C_  suc  N ) )
2111, 19, 20syl2anc 409 . . . . . . . . 9  |-  ( (
ph  /\  K  C_  N
)  ->  ( K  e.  suc  N  <->  suc  K  C_  suc  N ) )
2216, 21mpbird 166 . . . . . . . 8  |-  ( (
ph  /\  K  C_  N
)  ->  K  e.  suc  N )
236, 8, 22rspcdva 2835 . . . . . . 7  |-  ( (
ph  /\  K  C_  N
)  ->  ( F `  K )  =/=  ( F `  K )
)
2423neneqd 2357 . . . . . 6  |-  ( (
ph  /\  K  C_  N
)  ->  -.  ( F `  K )  =  ( F `  K ) )
2524ex 114 . . . . 5  |-  ( ph  ->  ( K  C_  N  ->  -.  ( F `  K )  =  ( F `  K ) ) )
264, 25mt2i 634 . . . 4  |-  ( ph  ->  -.  K  C_  N
)
2726adantr 274 . . 3  |-  ( (
ph  /\  N  =  K )  ->  -.  K  C_  N )
283, 27pm2.21dd 610 . 2  |-  ( (
ph  /\  N  =  K )  ->  N  e.  K )
2912adantr 274 . . . . 5  |-  ( (
ph  /\  K  e.  N )  ->  N  e.  om )
30 nnon 4587 . . . . 5  |-  ( N  e.  om  ->  N  e.  On )
3129, 30syl 14 . . . 4  |-  ( (
ph  /\  K  e.  N )  ->  N  e.  On )
32 simpr 109 . . . 4  |-  ( (
ph  /\  K  e.  N )  ->  K  e.  N )
33 onelss 4365 . . . 4  |-  ( N  e.  On  ->  ( K  e.  N  ->  K 
C_  N ) )
3431, 32, 33sylc 62 . . 3  |-  ( (
ph  /\  K  e.  N )  ->  K  C_  N )
3526adantr 274 . . 3  |-  ( (
ph  /\  K  e.  N )  ->  -.  K  C_  N )
3634, 35pm2.21dd 610 . 2  |-  ( (
ph  /\  K  e.  N )  ->  N  e.  K )
37 nntri3or 6461 . . 3  |-  ( ( N  e.  om  /\  K  e.  om )  ->  ( N  e.  K  \/  N  =  K  \/  K  e.  N
) )
3812, 10, 37syl2anc 409 . 2  |-  ( ph  ->  ( N  e.  K  \/  N  =  K  \/  K  e.  N
) )
391, 28, 36, 38mpjao3dan 1297 1  |-  ( ph  ->  N  e.  K )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ w3o 967    = wceq 1343    e. wcel 2136    =/= wne 2336   A.wral 2444    C_ wss 3116   Ord word 4340   Oncon0 4341   suc csuc 4343   omcom 4567   -onto->wfo 5186   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-tr 4081  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-iota 5153  df-fv 5196
This theorem is referenced by:  ennnfonelemex  12347
  Copyright terms: Public domain W3C validator