| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ennnfonelemk | Unicode version | ||
| Description: Lemma for ennnfone 12667. (Contributed by Jim Kingdon, 15-Jul-2023.) |
| Ref | Expression |
|---|---|
| ennnfonelemk.f |
|
| ennnfonelemk.k |
|
| ennnfonelemk.n |
|
| ennnfonelemk.j |
|
| Ref | Expression |
|---|---|
| ennnfonelemk |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. 2
| |
| 2 | eqimss2 3239 |
. . . 4
| |
| 3 | 2 | adantl 277 |
. . 3
|
| 4 | eqid 2196 |
. . . . 5
| |
| 5 | fveq2 5561 |
. . . . . . . . 9
| |
| 6 | 5 | neeq2d 2386 |
. . . . . . . 8
|
| 7 | ennnfonelemk.j |
. . . . . . . . 9
| |
| 8 | 7 | adantr 276 |
. . . . . . . 8
|
| 9 | simpr 110 |
. . . . . . . . . 10
| |
| 10 | ennnfonelemk.k |
. . . . . . . . . . . 12
| |
| 11 | 10 | adantr 276 |
. . . . . . . . . . 11
|
| 12 | ennnfonelemk.n |
. . . . . . . . . . . 12
| |
| 13 | 12 | adantr 276 |
. . . . . . . . . . 11
|
| 14 | nnsucsssuc 6559 |
. . . . . . . . . . 11
| |
| 15 | 11, 13, 14 | syl2anc 411 |
. . . . . . . . . 10
|
| 16 | 9, 15 | mpbid 147 |
. . . . . . . . 9
|
| 17 | peano2 4632 |
. . . . . . . . . . 11
| |
| 18 | nnord 4649 |
. . . . . . . . . . 11
| |
| 19 | 13, 17, 18 | 3syl 17 |
. . . . . . . . . 10
|
| 20 | ordelsuc 4542 |
. . . . . . . . . 10
| |
| 21 | 11, 19, 20 | syl2anc 411 |
. . . . . . . . 9
|
| 22 | 16, 21 | mpbird 167 |
. . . . . . . 8
|
| 23 | 6, 8, 22 | rspcdva 2873 |
. . . . . . 7
|
| 24 | 23 | neneqd 2388 |
. . . . . 6
|
| 25 | 24 | ex 115 |
. . . . 5
|
| 26 | 4, 25 | mt2i 645 |
. . . 4
|
| 27 | 26 | adantr 276 |
. . 3
|
| 28 | 3, 27 | pm2.21dd 621 |
. 2
|
| 29 | 12 | adantr 276 |
. . . . 5
|
| 30 | nnon 4647 |
. . . . 5
| |
| 31 | 29, 30 | syl 14 |
. . . 4
|
| 32 | simpr 110 |
. . . 4
| |
| 33 | onelss 4423 |
. . . 4
| |
| 34 | 31, 32, 33 | sylc 62 |
. . 3
|
| 35 | 26 | adantr 276 |
. . 3
|
| 36 | 34, 35 | pm2.21dd 621 |
. 2
|
| 37 | nntri3or 6560 |
. . 3
| |
| 38 | 12, 10, 37 | syl2anc 411 |
. 2
|
| 39 | 1, 28, 36, 38 | mpjao3dan 1318 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-tr 4133 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-iota 5220 df-fv 5267 |
| This theorem is referenced by: ennnfonelemex 12656 |
| Copyright terms: Public domain | W3C validator |