Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ennnfonelemk | Unicode version |
Description: Lemma for ennnfone 12358. (Contributed by Jim Kingdon, 15-Jul-2023.) |
Ref | Expression |
---|---|
ennnfonelemk.f | |
ennnfonelemk.k | |
ennnfonelemk.n | |
ennnfonelemk.j |
Ref | Expression |
---|---|
ennnfonelemk |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . 2 | |
2 | eqimss2 3197 | . . . 4 | |
3 | 2 | adantl 275 | . . 3 |
4 | eqid 2165 | . . . . 5 | |
5 | fveq2 5486 | . . . . . . . . 9 | |
6 | 5 | neeq2d 2355 | . . . . . . . 8 |
7 | ennnfonelemk.j | . . . . . . . . 9 | |
8 | 7 | adantr 274 | . . . . . . . 8 |
9 | simpr 109 | . . . . . . . . . 10 | |
10 | ennnfonelemk.k | . . . . . . . . . . . 12 | |
11 | 10 | adantr 274 | . . . . . . . . . . 11 |
12 | ennnfonelemk.n | . . . . . . . . . . . 12 | |
13 | 12 | adantr 274 | . . . . . . . . . . 11 |
14 | nnsucsssuc 6460 | . . . . . . . . . . 11 | |
15 | 11, 13, 14 | syl2anc 409 | . . . . . . . . . 10 |
16 | 9, 15 | mpbid 146 | . . . . . . . . 9 |
17 | peano2 4572 | . . . . . . . . . . 11 | |
18 | nnord 4589 | . . . . . . . . . . 11 | |
19 | 13, 17, 18 | 3syl 17 | . . . . . . . . . 10 |
20 | ordelsuc 4482 | . . . . . . . . . 10 | |
21 | 11, 19, 20 | syl2anc 409 | . . . . . . . . 9 |
22 | 16, 21 | mpbird 166 | . . . . . . . 8 |
23 | 6, 8, 22 | rspcdva 2835 | . . . . . . 7 |
24 | 23 | neneqd 2357 | . . . . . 6 |
25 | 24 | ex 114 | . . . . 5 |
26 | 4, 25 | mt2i 634 | . . . 4 |
27 | 26 | adantr 274 | . . 3 |
28 | 3, 27 | pm2.21dd 610 | . 2 |
29 | 12 | adantr 274 | . . . . 5 |
30 | nnon 4587 | . . . . 5 | |
31 | 29, 30 | syl 14 | . . . 4 |
32 | simpr 109 | . . . 4 | |
33 | onelss 4365 | . . . 4 | |
34 | 31, 32, 33 | sylc 62 | . . 3 |
35 | 26 | adantr 274 | . . 3 |
36 | 34, 35 | pm2.21dd 610 | . 2 |
37 | nntri3or 6461 | . . 3 | |
38 | 12, 10, 37 | syl2anc 409 | . 2 |
39 | 1, 28, 36, 38 | mpjao3dan 1297 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 w3o 967 wceq 1343 wcel 2136 wne 2336 wral 2444 wss 3116 word 4340 con0 4341 csuc 4343 com 4567 wfo 5186 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-iota 5153 df-fv 5196 |
This theorem is referenced by: ennnfonelemex 12347 |
Copyright terms: Public domain | W3C validator |