| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ennnfonelemk | Unicode version | ||
| Description: Lemma for ennnfone 12829. (Contributed by Jim Kingdon, 15-Jul-2023.) |
| Ref | Expression |
|---|---|
| ennnfonelemk.f |
|
| ennnfonelemk.k |
|
| ennnfonelemk.n |
|
| ennnfonelemk.j |
|
| Ref | Expression |
|---|---|
| ennnfonelemk |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. 2
| |
| 2 | eqimss2 3248 |
. . . 4
| |
| 3 | 2 | adantl 277 |
. . 3
|
| 4 | eqid 2205 |
. . . . 5
| |
| 5 | fveq2 5578 |
. . . . . . . . 9
| |
| 6 | 5 | neeq2d 2395 |
. . . . . . . 8
|
| 7 | ennnfonelemk.j |
. . . . . . . . 9
| |
| 8 | 7 | adantr 276 |
. . . . . . . 8
|
| 9 | simpr 110 |
. . . . . . . . . 10
| |
| 10 | ennnfonelemk.k |
. . . . . . . . . . . 12
| |
| 11 | 10 | adantr 276 |
. . . . . . . . . . 11
|
| 12 | ennnfonelemk.n |
. . . . . . . . . . . 12
| |
| 13 | 12 | adantr 276 |
. . . . . . . . . . 11
|
| 14 | nnsucsssuc 6580 |
. . . . . . . . . . 11
| |
| 15 | 11, 13, 14 | syl2anc 411 |
. . . . . . . . . 10
|
| 16 | 9, 15 | mpbid 147 |
. . . . . . . . 9
|
| 17 | peano2 4644 |
. . . . . . . . . . 11
| |
| 18 | nnord 4661 |
. . . . . . . . . . 11
| |
| 19 | 13, 17, 18 | 3syl 17 |
. . . . . . . . . 10
|
| 20 | ordelsuc 4554 |
. . . . . . . . . 10
| |
| 21 | 11, 19, 20 | syl2anc 411 |
. . . . . . . . 9
|
| 22 | 16, 21 | mpbird 167 |
. . . . . . . 8
|
| 23 | 6, 8, 22 | rspcdva 2882 |
. . . . . . 7
|
| 24 | 23 | neneqd 2397 |
. . . . . 6
|
| 25 | 24 | ex 115 |
. . . . 5
|
| 26 | 4, 25 | mt2i 645 |
. . . 4
|
| 27 | 26 | adantr 276 |
. . 3
|
| 28 | 3, 27 | pm2.21dd 621 |
. 2
|
| 29 | 12 | adantr 276 |
. . . . 5
|
| 30 | nnon 4659 |
. . . . 5
| |
| 31 | 29, 30 | syl 14 |
. . . 4
|
| 32 | simpr 110 |
. . . 4
| |
| 33 | onelss 4435 |
. . . 4
| |
| 34 | 31, 32, 33 | sylc 62 |
. . 3
|
| 35 | 26 | adantr 276 |
. . 3
|
| 36 | 34, 35 | pm2.21dd 621 |
. 2
|
| 37 | nntri3or 6581 |
. . 3
| |
| 38 | 12, 10, 37 | syl2anc 411 |
. 2
|
| 39 | 1, 28, 36, 38 | mpjao3dan 1320 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-iinf 4637 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-tr 4144 df-iord 4414 df-on 4416 df-suc 4419 df-iom 4640 df-iota 5233 df-fv 5280 |
| This theorem is referenced by: ennnfonelemex 12818 |
| Copyright terms: Public domain | W3C validator |