ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemk Unicode version

Theorem ennnfonelemk 12617
Description: Lemma for ennnfone 12642. (Contributed by Jim Kingdon, 15-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemk.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemk.k  |-  ( ph  ->  K  e.  om )
ennnfonelemk.n  |-  ( ph  ->  N  e.  om )
ennnfonelemk.j  |-  ( ph  ->  A. j  e.  suc  N ( F `  K
)  =/=  ( F `
 j ) )
Assertion
Ref Expression
ennnfonelemk  |-  ( ph  ->  N  e.  K )
Distinct variable groups:    j, F    j, K    j, N
Allowed substitution hints:    ph( j)    A( j)

Proof of Theorem ennnfonelemk
StepHypRef Expression
1 simpr 110 . 2  |-  ( (
ph  /\  N  e.  K )  ->  N  e.  K )
2 eqimss2 3238 . . . 4  |-  ( N  =  K  ->  K  C_  N )
32adantl 277 . . 3  |-  ( (
ph  /\  N  =  K )  ->  K  C_  N )
4 eqid 2196 . . . . 5  |-  ( F `
 K )  =  ( F `  K
)
5 fveq2 5558 . . . . . . . . 9  |-  ( j  =  K  ->  ( F `  j )  =  ( F `  K ) )
65neeq2d 2386 . . . . . . . 8  |-  ( j  =  K  ->  (
( F `  K
)  =/=  ( F `
 j )  <->  ( F `  K )  =/=  ( F `  K )
) )
7 ennnfonelemk.j . . . . . . . . 9  |-  ( ph  ->  A. j  e.  suc  N ( F `  K
)  =/=  ( F `
 j ) )
87adantr 276 . . . . . . . 8  |-  ( (
ph  /\  K  C_  N
)  ->  A. j  e.  suc  N ( F `
 K )  =/=  ( F `  j
) )
9 simpr 110 . . . . . . . . . 10  |-  ( (
ph  /\  K  C_  N
)  ->  K  C_  N
)
10 ennnfonelemk.k . . . . . . . . . . . 12  |-  ( ph  ->  K  e.  om )
1110adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  K  C_  N
)  ->  K  e.  om )
12 ennnfonelemk.n . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  om )
1312adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  K  C_  N
)  ->  N  e.  om )
14 nnsucsssuc 6550 . . . . . . . . . . 11  |-  ( ( K  e.  om  /\  N  e.  om )  ->  ( K  C_  N  <->  suc 
K  C_  suc  N ) )
1511, 13, 14syl2anc 411 . . . . . . . . . 10  |-  ( (
ph  /\  K  C_  N
)  ->  ( K  C_  N  <->  suc  K  C_  suc  N ) )
169, 15mpbid 147 . . . . . . . . 9  |-  ( (
ph  /\  K  C_  N
)  ->  suc  K  C_  suc  N )
17 peano2 4631 . . . . . . . . . . 11  |-  ( N  e.  om  ->  suc  N  e.  om )
18 nnord 4648 . . . . . . . . . . 11  |-  ( suc 
N  e.  om  ->  Ord 
suc  N )
1913, 17, 183syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  K  C_  N
)  ->  Ord  suc  N
)
20 ordelsuc 4541 . . . . . . . . . 10  |-  ( ( K  e.  om  /\  Ord  suc  N )  -> 
( K  e.  suc  N  <->  suc  K  C_  suc  N ) )
2111, 19, 20syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  K  C_  N
)  ->  ( K  e.  suc  N  <->  suc  K  C_  suc  N ) )
2216, 21mpbird 167 . . . . . . . 8  |-  ( (
ph  /\  K  C_  N
)  ->  K  e.  suc  N )
236, 8, 22rspcdva 2873 . . . . . . 7  |-  ( (
ph  /\  K  C_  N
)  ->  ( F `  K )  =/=  ( F `  K )
)
2423neneqd 2388 . . . . . 6  |-  ( (
ph  /\  K  C_  N
)  ->  -.  ( F `  K )  =  ( F `  K ) )
2524ex 115 . . . . 5  |-  ( ph  ->  ( K  C_  N  ->  -.  ( F `  K )  =  ( F `  K ) ) )
264, 25mt2i 645 . . . 4  |-  ( ph  ->  -.  K  C_  N
)
2726adantr 276 . . 3  |-  ( (
ph  /\  N  =  K )  ->  -.  K  C_  N )
283, 27pm2.21dd 621 . 2  |-  ( (
ph  /\  N  =  K )  ->  N  e.  K )
2912adantr 276 . . . . 5  |-  ( (
ph  /\  K  e.  N )  ->  N  e.  om )
30 nnon 4646 . . . . 5  |-  ( N  e.  om  ->  N  e.  On )
3129, 30syl 14 . . . 4  |-  ( (
ph  /\  K  e.  N )  ->  N  e.  On )
32 simpr 110 . . . 4  |-  ( (
ph  /\  K  e.  N )  ->  K  e.  N )
33 onelss 4422 . . . 4  |-  ( N  e.  On  ->  ( K  e.  N  ->  K 
C_  N ) )
3431, 32, 33sylc 62 . . 3  |-  ( (
ph  /\  K  e.  N )  ->  K  C_  N )
3526adantr 276 . . 3  |-  ( (
ph  /\  K  e.  N )  ->  -.  K  C_  N )
3634, 35pm2.21dd 621 . 2  |-  ( (
ph  /\  K  e.  N )  ->  N  e.  K )
37 nntri3or 6551 . . 3  |-  ( ( N  e.  om  /\  K  e.  om )  ->  ( N  e.  K  \/  N  =  K  \/  K  e.  N
) )
3812, 10, 37syl2anc 411 . 2  |-  ( ph  ->  ( N  e.  K  \/  N  =  K  \/  K  e.  N
) )
391, 28, 36, 38mpjao3dan 1318 1  |-  ( ph  ->  N  e.  K )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 979    = wceq 1364    e. wcel 2167    =/= wne 2367   A.wral 2475    C_ wss 3157   Ord word 4397   Oncon0 4398   suc csuc 4400   omcom 4626   -onto->wfo 5256   ` cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-tr 4132  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-iota 5219  df-fv 5266
This theorem is referenced by:  ennnfonelemex  12631
  Copyright terms: Public domain W3C validator