Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ennnfonelemk | Unicode version |
Description: Lemma for ennnfone 12380. (Contributed by Jim Kingdon, 15-Jul-2023.) |
Ref | Expression |
---|---|
ennnfonelemk.f | |
ennnfonelemk.k | |
ennnfonelemk.n | |
ennnfonelemk.j |
Ref | Expression |
---|---|
ennnfonelemk |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . 2 | |
2 | eqimss2 3202 | . . . 4 | |
3 | 2 | adantl 275 | . . 3 |
4 | eqid 2170 | . . . . 5 | |
5 | fveq2 5496 | . . . . . . . . 9 | |
6 | 5 | neeq2d 2359 | . . . . . . . 8 |
7 | ennnfonelemk.j | . . . . . . . . 9 | |
8 | 7 | adantr 274 | . . . . . . . 8 |
9 | simpr 109 | . . . . . . . . . 10 | |
10 | ennnfonelemk.k | . . . . . . . . . . . 12 | |
11 | 10 | adantr 274 | . . . . . . . . . . 11 |
12 | ennnfonelemk.n | . . . . . . . . . . . 12 | |
13 | 12 | adantr 274 | . . . . . . . . . . 11 |
14 | nnsucsssuc 6471 | . . . . . . . . . . 11 | |
15 | 11, 13, 14 | syl2anc 409 | . . . . . . . . . 10 |
16 | 9, 15 | mpbid 146 | . . . . . . . . 9 |
17 | peano2 4579 | . . . . . . . . . . 11 | |
18 | nnord 4596 | . . . . . . . . . . 11 | |
19 | 13, 17, 18 | 3syl 17 | . . . . . . . . . 10 |
20 | ordelsuc 4489 | . . . . . . . . . 10 | |
21 | 11, 19, 20 | syl2anc 409 | . . . . . . . . 9 |
22 | 16, 21 | mpbird 166 | . . . . . . . 8 |
23 | 6, 8, 22 | rspcdva 2839 | . . . . . . 7 |
24 | 23 | neneqd 2361 | . . . . . 6 |
25 | 24 | ex 114 | . . . . 5 |
26 | 4, 25 | mt2i 639 | . . . 4 |
27 | 26 | adantr 274 | . . 3 |
28 | 3, 27 | pm2.21dd 615 | . 2 |
29 | 12 | adantr 274 | . . . . 5 |
30 | nnon 4594 | . . . . 5 | |
31 | 29, 30 | syl 14 | . . . 4 |
32 | simpr 109 | . . . 4 | |
33 | onelss 4372 | . . . 4 | |
34 | 31, 32, 33 | sylc 62 | . . 3 |
35 | 26 | adantr 274 | . . 3 |
36 | 34, 35 | pm2.21dd 615 | . 2 |
37 | nntri3or 6472 | . . 3 | |
38 | 12, 10, 37 | syl2anc 409 | . 2 |
39 | 1, 28, 36, 38 | mpjao3dan 1302 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 w3o 972 wceq 1348 wcel 2141 wne 2340 wral 2448 wss 3121 word 4347 con0 4348 csuc 4350 com 4574 wfo 5196 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-tr 4088 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-iota 5160 df-fv 5206 |
This theorem is referenced by: ennnfonelemex 12369 |
Copyright terms: Public domain | W3C validator |