| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ennnfonelemk | Unicode version | ||
| Description: Lemma for ennnfone 12996. (Contributed by Jim Kingdon, 15-Jul-2023.) |
| Ref | Expression |
|---|---|
| ennnfonelemk.f |
|
| ennnfonelemk.k |
|
| ennnfonelemk.n |
|
| ennnfonelemk.j |
|
| Ref | Expression |
|---|---|
| ennnfonelemk |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. 2
| |
| 2 | eqimss2 3279 |
. . . 4
| |
| 3 | 2 | adantl 277 |
. . 3
|
| 4 | eqid 2229 |
. . . . 5
| |
| 5 | fveq2 5627 |
. . . . . . . . 9
| |
| 6 | 5 | neeq2d 2419 |
. . . . . . . 8
|
| 7 | ennnfonelemk.j |
. . . . . . . . 9
| |
| 8 | 7 | adantr 276 |
. . . . . . . 8
|
| 9 | simpr 110 |
. . . . . . . . . 10
| |
| 10 | ennnfonelemk.k |
. . . . . . . . . . . 12
| |
| 11 | 10 | adantr 276 |
. . . . . . . . . . 11
|
| 12 | ennnfonelemk.n |
. . . . . . . . . . . 12
| |
| 13 | 12 | adantr 276 |
. . . . . . . . . . 11
|
| 14 | nnsucsssuc 6638 |
. . . . . . . . . . 11
| |
| 15 | 11, 13, 14 | syl2anc 411 |
. . . . . . . . . 10
|
| 16 | 9, 15 | mpbid 147 |
. . . . . . . . 9
|
| 17 | peano2 4687 |
. . . . . . . . . . 11
| |
| 18 | nnord 4704 |
. . . . . . . . . . 11
| |
| 19 | 13, 17, 18 | 3syl 17 |
. . . . . . . . . 10
|
| 20 | ordelsuc 4597 |
. . . . . . . . . 10
| |
| 21 | 11, 19, 20 | syl2anc 411 |
. . . . . . . . 9
|
| 22 | 16, 21 | mpbird 167 |
. . . . . . . 8
|
| 23 | 6, 8, 22 | rspcdva 2912 |
. . . . . . 7
|
| 24 | 23 | neneqd 2421 |
. . . . . 6
|
| 25 | 24 | ex 115 |
. . . . 5
|
| 26 | 4, 25 | mt2i 647 |
. . . 4
|
| 27 | 26 | adantr 276 |
. . 3
|
| 28 | 3, 27 | pm2.21dd 623 |
. 2
|
| 29 | 12 | adantr 276 |
. . . . 5
|
| 30 | nnon 4702 |
. . . . 5
| |
| 31 | 29, 30 | syl 14 |
. . . 4
|
| 32 | simpr 110 |
. . . 4
| |
| 33 | onelss 4478 |
. . . 4
| |
| 34 | 31, 32, 33 | sylc 62 |
. . 3
|
| 35 | 26 | adantr 276 |
. . 3
|
| 36 | 34, 35 | pm2.21dd 623 |
. 2
|
| 37 | nntri3or 6639 |
. . 3
| |
| 38 | 12, 10, 37 | syl2anc 411 |
. 2
|
| 39 | 1, 28, 36, 38 | mpjao3dan 1341 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-tr 4183 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-iota 5278 df-fv 5326 |
| This theorem is referenced by: ennnfonelemex 12985 |
| Copyright terms: Public domain | W3C validator |