| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ennnfonelemnn0 | Unicode version | ||
| Description: Lemma for ennnfone 12829. A version of ennnfonelemen 12825 expressed in
terms of |
| Ref | Expression |
|---|---|
| ennnfonelemr.dceq |
|
| ennnfonelemr.f |
|
| ennnfonelemr.n |
|
| ennnfonelemnn0.n |
|
| Ref | Expression |
|---|---|
| ennnfonelemnn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ennnfonelemr.dceq |
. 2
| |
| 2 | ennnfonelemr.f |
. . 3
| |
| 3 | ennnfonelemnn0.n |
. . . . . 6
| |
| 4 | 3 | frechashgf1o 10575 |
. . . . 5
|
| 5 | f1ofo 5531 |
. . . . 5
| |
| 6 | 4, 5 | ax-mp 5 |
. . . 4
|
| 7 | 6 | a1i 9 |
. . 3
|
| 8 | foco 5511 |
. . 3
| |
| 9 | 2, 7, 8 | syl2anc 411 |
. 2
|
| 10 | oveq2 5954 |
. . . . . . 7
| |
| 11 | 10 | raleqdv 2708 |
. . . . . 6
|
| 12 | 11 | rexbidv 2507 |
. . . . 5
|
| 13 | ennnfonelemr.n |
. . . . . 6
| |
| 14 | 13 | adantr 276 |
. . . . 5
|
| 15 | f1of 5524 |
. . . . . . . 8
| |
| 16 | 4, 15 | ax-mp 5 |
. . . . . . 7
|
| 17 | 16 | a1i 9 |
. . . . . 6
|
| 18 | simpr 110 |
. . . . . 6
| |
| 19 | 17, 18 | ffvelcdmd 5718 |
. . . . 5
|
| 20 | 12, 14, 19 | rspcdva 2882 |
. . . 4
|
| 21 | f1ocnv 5537 |
. . . . . . . 8
| |
| 22 | f1of 5524 |
. . . . . . . 8
| |
| 23 | 4, 21, 22 | mp2b 8 |
. . . . . . 7
|
| 24 | 23 | a1i 9 |
. . . . . 6
|
| 25 | simprl 529 |
. . . . . 6
| |
| 26 | 24, 25 | ffvelcdmd 5718 |
. . . . 5
|
| 27 | fveq2 5578 |
. . . . . . . . 9
| |
| 28 | 27 | neeq2d 2395 |
. . . . . . . 8
|
| 29 | simplrr 536 |
. . . . . . . 8
| |
| 30 | simpr 110 |
. . . . . . . . . . 11
| |
| 31 | 18 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 32 | peano2 4644 |
. . . . . . . . . . . 12
| |
| 33 | 31, 32 | syl 14 |
. . . . . . . . . . 11
|
| 34 | elnn 4655 |
. . . . . . . . . . 11
| |
| 35 | 30, 33, 34 | syl2anc 411 |
. . . . . . . . . 10
|
| 36 | 16 | ffvelcdmi 5716 |
. . . . . . . . . 10
|
| 37 | 35, 36 | syl 14 |
. . . . . . . . 9
|
| 38 | 0zd 9386 |
. . . . . . . . . . . . 13
| |
| 39 | 38, 3, 35, 33 | frec2uzltd 10550 |
. . . . . . . . . . . 12
|
| 40 | 30, 39 | mpd 13 |
. . . . . . . . . . 11
|
| 41 | 38, 3, 31 | frec2uzsucd 10548 |
. . . . . . . . . . 11
|
| 42 | 40, 41 | breqtrd 4071 |
. . . . . . . . . 10
|
| 43 | 19 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 44 | nn0leltp1 9438 |
. . . . . . . . . . 11
| |
| 45 | 37, 43, 44 | syl2anc 411 |
. . . . . . . . . 10
|
| 46 | 42, 45 | mpbird 167 |
. . . . . . . . 9
|
| 47 | fznn0 10237 |
. . . . . . . . . 10
| |
| 48 | 43, 47 | syl 14 |
. . . . . . . . 9
|
| 49 | 37, 46, 48 | mpbir2and 947 |
. . . . . . . 8
|
| 50 | 28, 29, 49 | rspcdva 2882 |
. . . . . . 7
|
| 51 | 26 | adantr 276 |
. . . . . . . . 9
|
| 52 | fvco3 5652 |
. . . . . . . . 9
| |
| 53 | 16, 51, 52 | sylancr 414 |
. . . . . . . 8
|
| 54 | 25 | adantr 276 |
. . . . . . . . . 10
|
| 55 | f1ocnvfv2 5849 |
. . . . . . . . . 10
| |
| 56 | 4, 54, 55 | sylancr 414 |
. . . . . . . . 9
|
| 57 | 56 | fveq2d 5582 |
. . . . . . . 8
|
| 58 | 53, 57 | eqtrd 2238 |
. . . . . . 7
|
| 59 | fvco3 5652 |
. . . . . . . 8
| |
| 60 | 16, 35, 59 | sylancr 414 |
. . . . . . 7
|
| 61 | 50, 58, 60 | 3netr4d 2409 |
. . . . . 6
|
| 62 | 61 | ralrimiva 2579 |
. . . . 5
|
| 63 | fveq2 5578 |
. . . . . . . 8
| |
| 64 | 63 | neeq1d 2394 |
. . . . . . 7
|
| 65 | 64 | ralbidv 2506 |
. . . . . 6
|
| 66 | 65 | rspcev 2877 |
. . . . 5
|
| 67 | 26, 62, 66 | syl2anc 411 |
. . . 4
|
| 68 | 20, 67 | rexlimddv 2628 |
. . 3
|
| 69 | 68 | ralrimiva 2579 |
. 2
|
| 70 | id 19 |
. . . 4
| |
| 71 | dmeq 4879 |
. . . . . . 7
| |
| 72 | 71 | opeq1d 3825 |
. . . . . 6
|
| 73 | 72 | sneqd 3646 |
. . . . 5
|
| 74 | 70, 73 | uneq12d 3328 |
. . . 4
|
| 75 | 70, 74 | ifeq12d 3590 |
. . 3
|
| 76 | fveq2 5578 |
. . . . 5
| |
| 77 | imaeq2 5019 |
. . . . 5
| |
| 78 | 76, 77 | eleq12d 2276 |
. . . 4
|
| 79 | 76 | opeq2d 3826 |
. . . . . 6
|
| 80 | 79 | sneqd 3646 |
. . . . 5
|
| 81 | 80 | uneq2d 3327 |
. . . 4
|
| 82 | 78, 81 | ifbieq2d 3595 |
. . 3
|
| 83 | 75, 82 | cbvmpov 6027 |
. 2
|
| 84 | eqeq1 2212 |
. . . 4
| |
| 85 | fvoveq1 5969 |
. . . 4
| |
| 86 | 84, 85 | ifbieq2d 3595 |
. . 3
|
| 87 | 86 | cbvmptv 4141 |
. 2
|
| 88 | eqid 2205 |
. 2
| |
| 89 | fveq2 5578 |
. . 3
| |
| 90 | 89 | cbviunv 3966 |
. 2
|
| 91 | 1, 9, 69, 83, 3, 87, 88, 90 | ennnfonelemen 12825 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-iord 4414 df-on 4416 df-ilim 4417 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-frec 6479 df-er 6622 df-pm 6740 df-en 6830 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-inn 9039 df-n0 9298 df-z 9375 df-uz 9651 df-fz 10133 df-seqfrec 10595 |
| This theorem is referenced by: ennnfonelemr 12827 |
| Copyright terms: Public domain | W3C validator |