| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ennnfonelemnn0 | Unicode version | ||
| Description: Lemma for ennnfone 12642.  A version of ennnfonelemen 12638 expressed in
         terms of  | 
| Ref | Expression | 
|---|---|
| ennnfonelemr.dceq | 
 | 
| ennnfonelemr.f | 
 | 
| ennnfonelemr.n | 
 | 
| ennnfonelemnn0.n | 
 | 
| Ref | Expression | 
|---|---|
| ennnfonelemnn0 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ennnfonelemr.dceq | 
. 2
 | |
| 2 | ennnfonelemr.f | 
. . 3
 | |
| 3 | ennnfonelemnn0.n | 
. . . . . 6
 | |
| 4 | 3 | frechashgf1o 10520 | 
. . . . 5
 | 
| 5 | f1ofo 5511 | 
. . . . 5
 | |
| 6 | 4, 5 | ax-mp 5 | 
. . . 4
 | 
| 7 | 6 | a1i 9 | 
. . 3
 | 
| 8 | foco 5491 | 
. . 3
 | |
| 9 | 2, 7, 8 | syl2anc 411 | 
. 2
 | 
| 10 | oveq2 5930 | 
. . . . . . 7
 | |
| 11 | 10 | raleqdv 2699 | 
. . . . . 6
 | 
| 12 | 11 | rexbidv 2498 | 
. . . . 5
 | 
| 13 | ennnfonelemr.n | 
. . . . . 6
 | |
| 14 | 13 | adantr 276 | 
. . . . 5
 | 
| 15 | f1of 5504 | 
. . . . . . . 8
 | |
| 16 | 4, 15 | ax-mp 5 | 
. . . . . . 7
 | 
| 17 | 16 | a1i 9 | 
. . . . . 6
 | 
| 18 | simpr 110 | 
. . . . . 6
 | |
| 19 | 17, 18 | ffvelcdmd 5698 | 
. . . . 5
 | 
| 20 | 12, 14, 19 | rspcdva 2873 | 
. . . 4
 | 
| 21 | f1ocnv 5517 | 
. . . . . . . 8
 | |
| 22 | f1of 5504 | 
. . . . . . . 8
 | |
| 23 | 4, 21, 22 | mp2b 8 | 
. . . . . . 7
 | 
| 24 | 23 | a1i 9 | 
. . . . . 6
 | 
| 25 | simprl 529 | 
. . . . . 6
 | |
| 26 | 24, 25 | ffvelcdmd 5698 | 
. . . . 5
 | 
| 27 | fveq2 5558 | 
. . . . . . . . 9
 | |
| 28 | 27 | neeq2d 2386 | 
. . . . . . . 8
 | 
| 29 | simplrr 536 | 
. . . . . . . 8
 | |
| 30 | simpr 110 | 
. . . . . . . . . . 11
 | |
| 31 | 18 | ad2antrr 488 | 
. . . . . . . . . . . 12
 | 
| 32 | peano2 4631 | 
. . . . . . . . . . . 12
 | |
| 33 | 31, 32 | syl 14 | 
. . . . . . . . . . 11
 | 
| 34 | elnn 4642 | 
. . . . . . . . . . 11
 | |
| 35 | 30, 33, 34 | syl2anc 411 | 
. . . . . . . . . 10
 | 
| 36 | 16 | ffvelcdmi 5696 | 
. . . . . . . . . 10
 | 
| 37 | 35, 36 | syl 14 | 
. . . . . . . . 9
 | 
| 38 | 0zd 9338 | 
. . . . . . . . . . . . 13
 | |
| 39 | 38, 3, 35, 33 | frec2uzltd 10495 | 
. . . . . . . . . . . 12
 | 
| 40 | 30, 39 | mpd 13 | 
. . . . . . . . . . 11
 | 
| 41 | 38, 3, 31 | frec2uzsucd 10493 | 
. . . . . . . . . . 11
 | 
| 42 | 40, 41 | breqtrd 4059 | 
. . . . . . . . . 10
 | 
| 43 | 19 | ad2antrr 488 | 
. . . . . . . . . . 11
 | 
| 44 | nn0leltp1 9389 | 
. . . . . . . . . . 11
 | |
| 45 | 37, 43, 44 | syl2anc 411 | 
. . . . . . . . . 10
 | 
| 46 | 42, 45 | mpbird 167 | 
. . . . . . . . 9
 | 
| 47 | fznn0 10188 | 
. . . . . . . . . 10
 | |
| 48 | 43, 47 | syl 14 | 
. . . . . . . . 9
 | 
| 49 | 37, 46, 48 | mpbir2and 946 | 
. . . . . . . 8
 | 
| 50 | 28, 29, 49 | rspcdva 2873 | 
. . . . . . 7
 | 
| 51 | 26 | adantr 276 | 
. . . . . . . . 9
 | 
| 52 | fvco3 5632 | 
. . . . . . . . 9
 | |
| 53 | 16, 51, 52 | sylancr 414 | 
. . . . . . . 8
 | 
| 54 | 25 | adantr 276 | 
. . . . . . . . . 10
 | 
| 55 | f1ocnvfv2 5825 | 
. . . . . . . . . 10
 | |
| 56 | 4, 54, 55 | sylancr 414 | 
. . . . . . . . 9
 | 
| 57 | 56 | fveq2d 5562 | 
. . . . . . . 8
 | 
| 58 | 53, 57 | eqtrd 2229 | 
. . . . . . 7
 | 
| 59 | fvco3 5632 | 
. . . . . . . 8
 | |
| 60 | 16, 35, 59 | sylancr 414 | 
. . . . . . 7
 | 
| 61 | 50, 58, 60 | 3netr4d 2400 | 
. . . . . 6
 | 
| 62 | 61 | ralrimiva 2570 | 
. . . . 5
 | 
| 63 | fveq2 5558 | 
. . . . . . . 8
 | |
| 64 | 63 | neeq1d 2385 | 
. . . . . . 7
 | 
| 65 | 64 | ralbidv 2497 | 
. . . . . 6
 | 
| 66 | 65 | rspcev 2868 | 
. . . . 5
 | 
| 67 | 26, 62, 66 | syl2anc 411 | 
. . . 4
 | 
| 68 | 20, 67 | rexlimddv 2619 | 
. . 3
 | 
| 69 | 68 | ralrimiva 2570 | 
. 2
 | 
| 70 | id 19 | 
. . . 4
 | |
| 71 | dmeq 4866 | 
. . . . . . 7
 | |
| 72 | 71 | opeq1d 3814 | 
. . . . . 6
 | 
| 73 | 72 | sneqd 3635 | 
. . . . 5
 | 
| 74 | 70, 73 | uneq12d 3318 | 
. . . 4
 | 
| 75 | 70, 74 | ifeq12d 3580 | 
. . 3
 | 
| 76 | fveq2 5558 | 
. . . . 5
 | |
| 77 | imaeq2 5005 | 
. . . . 5
 | |
| 78 | 76, 77 | eleq12d 2267 | 
. . . 4
 | 
| 79 | 76 | opeq2d 3815 | 
. . . . . 6
 | 
| 80 | 79 | sneqd 3635 | 
. . . . 5
 | 
| 81 | 80 | uneq2d 3317 | 
. . . 4
 | 
| 82 | 78, 81 | ifbieq2d 3585 | 
. . 3
 | 
| 83 | 75, 82 | cbvmpov 6002 | 
. 2
 | 
| 84 | eqeq1 2203 | 
. . . 4
 | |
| 85 | fvoveq1 5945 | 
. . . 4
 | |
| 86 | 84, 85 | ifbieq2d 3585 | 
. . 3
 | 
| 87 | 86 | cbvmptv 4129 | 
. 2
 | 
| 88 | eqid 2196 | 
. 2
 | |
| 89 | fveq2 5558 | 
. . 3
 | |
| 90 | 89 | cbviunv 3955 | 
. 2
 | 
| 91 | 1, 9, 69, 83, 3, 87, 88, 90 | ennnfonelemen 12638 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-er 6592 df-pm 6710 df-en 6800 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 df-seqfrec 10540 | 
| This theorem is referenced by: ennnfonelemr 12640 | 
| Copyright terms: Public domain | W3C validator |