| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ennnfonelemnn0 | Unicode version | ||
| Description: Lemma for ennnfone 12911. A version of ennnfonelemen 12907 expressed in
terms of |
| Ref | Expression |
|---|---|
| ennnfonelemr.dceq |
|
| ennnfonelemr.f |
|
| ennnfonelemr.n |
|
| ennnfonelemnn0.n |
|
| Ref | Expression |
|---|---|
| ennnfonelemnn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ennnfonelemr.dceq |
. 2
| |
| 2 | ennnfonelemr.f |
. . 3
| |
| 3 | ennnfonelemnn0.n |
. . . . . 6
| |
| 4 | 3 | frechashgf1o 10610 |
. . . . 5
|
| 5 | f1ofo 5551 |
. . . . 5
| |
| 6 | 4, 5 | ax-mp 5 |
. . . 4
|
| 7 | 6 | a1i 9 |
. . 3
|
| 8 | foco 5531 |
. . 3
| |
| 9 | 2, 7, 8 | syl2anc 411 |
. 2
|
| 10 | oveq2 5975 |
. . . . . . 7
| |
| 11 | 10 | raleqdv 2711 |
. . . . . 6
|
| 12 | 11 | rexbidv 2509 |
. . . . 5
|
| 13 | ennnfonelemr.n |
. . . . . 6
| |
| 14 | 13 | adantr 276 |
. . . . 5
|
| 15 | f1of 5544 |
. . . . . . . 8
| |
| 16 | 4, 15 | ax-mp 5 |
. . . . . . 7
|
| 17 | 16 | a1i 9 |
. . . . . 6
|
| 18 | simpr 110 |
. . . . . 6
| |
| 19 | 17, 18 | ffvelcdmd 5739 |
. . . . 5
|
| 20 | 12, 14, 19 | rspcdva 2889 |
. . . 4
|
| 21 | f1ocnv 5557 |
. . . . . . . 8
| |
| 22 | f1of 5544 |
. . . . . . . 8
| |
| 23 | 4, 21, 22 | mp2b 8 |
. . . . . . 7
|
| 24 | 23 | a1i 9 |
. . . . . 6
|
| 25 | simprl 529 |
. . . . . 6
| |
| 26 | 24, 25 | ffvelcdmd 5739 |
. . . . 5
|
| 27 | fveq2 5599 |
. . . . . . . . 9
| |
| 28 | 27 | neeq2d 2397 |
. . . . . . . 8
|
| 29 | simplrr 536 |
. . . . . . . 8
| |
| 30 | simpr 110 |
. . . . . . . . . . 11
| |
| 31 | 18 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 32 | peano2 4661 |
. . . . . . . . . . . 12
| |
| 33 | 31, 32 | syl 14 |
. . . . . . . . . . 11
|
| 34 | elnn 4672 |
. . . . . . . . . . 11
| |
| 35 | 30, 33, 34 | syl2anc 411 |
. . . . . . . . . 10
|
| 36 | 16 | ffvelcdmi 5737 |
. . . . . . . . . 10
|
| 37 | 35, 36 | syl 14 |
. . . . . . . . 9
|
| 38 | 0zd 9419 |
. . . . . . . . . . . . 13
| |
| 39 | 38, 3, 35, 33 | frec2uzltd 10585 |
. . . . . . . . . . . 12
|
| 40 | 30, 39 | mpd 13 |
. . . . . . . . . . 11
|
| 41 | 38, 3, 31 | frec2uzsucd 10583 |
. . . . . . . . . . 11
|
| 42 | 40, 41 | breqtrd 4085 |
. . . . . . . . . 10
|
| 43 | 19 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 44 | nn0leltp1 9471 |
. . . . . . . . . . 11
| |
| 45 | 37, 43, 44 | syl2anc 411 |
. . . . . . . . . 10
|
| 46 | 42, 45 | mpbird 167 |
. . . . . . . . 9
|
| 47 | fznn0 10270 |
. . . . . . . . . 10
| |
| 48 | 43, 47 | syl 14 |
. . . . . . . . 9
|
| 49 | 37, 46, 48 | mpbir2and 947 |
. . . . . . . 8
|
| 50 | 28, 29, 49 | rspcdva 2889 |
. . . . . . 7
|
| 51 | 26 | adantr 276 |
. . . . . . . . 9
|
| 52 | fvco3 5673 |
. . . . . . . . 9
| |
| 53 | 16, 51, 52 | sylancr 414 |
. . . . . . . 8
|
| 54 | 25 | adantr 276 |
. . . . . . . . . 10
|
| 55 | f1ocnvfv2 5870 |
. . . . . . . . . 10
| |
| 56 | 4, 54, 55 | sylancr 414 |
. . . . . . . . 9
|
| 57 | 56 | fveq2d 5603 |
. . . . . . . 8
|
| 58 | 53, 57 | eqtrd 2240 |
. . . . . . 7
|
| 59 | fvco3 5673 |
. . . . . . . 8
| |
| 60 | 16, 35, 59 | sylancr 414 |
. . . . . . 7
|
| 61 | 50, 58, 60 | 3netr4d 2411 |
. . . . . 6
|
| 62 | 61 | ralrimiva 2581 |
. . . . 5
|
| 63 | fveq2 5599 |
. . . . . . . 8
| |
| 64 | 63 | neeq1d 2396 |
. . . . . . 7
|
| 65 | 64 | ralbidv 2508 |
. . . . . 6
|
| 66 | 65 | rspcev 2884 |
. . . . 5
|
| 67 | 26, 62, 66 | syl2anc 411 |
. . . 4
|
| 68 | 20, 67 | rexlimddv 2630 |
. . 3
|
| 69 | 68 | ralrimiva 2581 |
. 2
|
| 70 | id 19 |
. . . 4
| |
| 71 | dmeq 4897 |
. . . . . . 7
| |
| 72 | 71 | opeq1d 3839 |
. . . . . 6
|
| 73 | 72 | sneqd 3656 |
. . . . 5
|
| 74 | 70, 73 | uneq12d 3336 |
. . . 4
|
| 75 | 70, 74 | ifeq12d 3599 |
. . 3
|
| 76 | fveq2 5599 |
. . . . 5
| |
| 77 | imaeq2 5037 |
. . . . 5
| |
| 78 | 76, 77 | eleq12d 2278 |
. . . 4
|
| 79 | 76 | opeq2d 3840 |
. . . . . 6
|
| 80 | 79 | sneqd 3656 |
. . . . 5
|
| 81 | 80 | uneq2d 3335 |
. . . 4
|
| 82 | 78, 81 | ifbieq2d 3604 |
. . 3
|
| 83 | 75, 82 | cbvmpov 6048 |
. 2
|
| 84 | eqeq1 2214 |
. . . 4
| |
| 85 | fvoveq1 5990 |
. . . 4
| |
| 86 | 84, 85 | ifbieq2d 3604 |
. . 3
|
| 87 | 86 | cbvmptv 4156 |
. 2
|
| 88 | eqid 2207 |
. 2
| |
| 89 | fveq2 5599 |
. . 3
| |
| 90 | 89 | cbviunv 3980 |
. 2
|
| 91 | 1, 9, 69, 83, 3, 87, 88, 90 | ennnfonelemen 12907 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-er 6643 df-pm 6761 df-en 6851 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-fz 10166 df-seqfrec 10630 |
| This theorem is referenced by: ennnfonelemr 12909 |
| Copyright terms: Public domain | W3C validator |