| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ennnfonelemnn0 | Unicode version | ||
| Description: Lemma for ennnfone 12667. A version of ennnfonelemen 12663 expressed in
terms of |
| Ref | Expression |
|---|---|
| ennnfonelemr.dceq |
|
| ennnfonelemr.f |
|
| ennnfonelemr.n |
|
| ennnfonelemnn0.n |
|
| Ref | Expression |
|---|---|
| ennnfonelemnn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ennnfonelemr.dceq |
. 2
| |
| 2 | ennnfonelemr.f |
. . 3
| |
| 3 | ennnfonelemnn0.n |
. . . . . 6
| |
| 4 | 3 | frechashgf1o 10537 |
. . . . 5
|
| 5 | f1ofo 5514 |
. . . . 5
| |
| 6 | 4, 5 | ax-mp 5 |
. . . 4
|
| 7 | 6 | a1i 9 |
. . 3
|
| 8 | foco 5494 |
. . 3
| |
| 9 | 2, 7, 8 | syl2anc 411 |
. 2
|
| 10 | oveq2 5933 |
. . . . . . 7
| |
| 11 | 10 | raleqdv 2699 |
. . . . . 6
|
| 12 | 11 | rexbidv 2498 |
. . . . 5
|
| 13 | ennnfonelemr.n |
. . . . . 6
| |
| 14 | 13 | adantr 276 |
. . . . 5
|
| 15 | f1of 5507 |
. . . . . . . 8
| |
| 16 | 4, 15 | ax-mp 5 |
. . . . . . 7
|
| 17 | 16 | a1i 9 |
. . . . . 6
|
| 18 | simpr 110 |
. . . . . 6
| |
| 19 | 17, 18 | ffvelcdmd 5701 |
. . . . 5
|
| 20 | 12, 14, 19 | rspcdva 2873 |
. . . 4
|
| 21 | f1ocnv 5520 |
. . . . . . . 8
| |
| 22 | f1of 5507 |
. . . . . . . 8
| |
| 23 | 4, 21, 22 | mp2b 8 |
. . . . . . 7
|
| 24 | 23 | a1i 9 |
. . . . . 6
|
| 25 | simprl 529 |
. . . . . 6
| |
| 26 | 24, 25 | ffvelcdmd 5701 |
. . . . 5
|
| 27 | fveq2 5561 |
. . . . . . . . 9
| |
| 28 | 27 | neeq2d 2386 |
. . . . . . . 8
|
| 29 | simplrr 536 |
. . . . . . . 8
| |
| 30 | simpr 110 |
. . . . . . . . . . 11
| |
| 31 | 18 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 32 | peano2 4632 |
. . . . . . . . . . . 12
| |
| 33 | 31, 32 | syl 14 |
. . . . . . . . . . 11
|
| 34 | elnn 4643 |
. . . . . . . . . . 11
| |
| 35 | 30, 33, 34 | syl2anc 411 |
. . . . . . . . . 10
|
| 36 | 16 | ffvelcdmi 5699 |
. . . . . . . . . 10
|
| 37 | 35, 36 | syl 14 |
. . . . . . . . 9
|
| 38 | 0zd 9355 |
. . . . . . . . . . . . 13
| |
| 39 | 38, 3, 35, 33 | frec2uzltd 10512 |
. . . . . . . . . . . 12
|
| 40 | 30, 39 | mpd 13 |
. . . . . . . . . . 11
|
| 41 | 38, 3, 31 | frec2uzsucd 10510 |
. . . . . . . . . . 11
|
| 42 | 40, 41 | breqtrd 4060 |
. . . . . . . . . 10
|
| 43 | 19 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 44 | nn0leltp1 9406 |
. . . . . . . . . . 11
| |
| 45 | 37, 43, 44 | syl2anc 411 |
. . . . . . . . . 10
|
| 46 | 42, 45 | mpbird 167 |
. . . . . . . . 9
|
| 47 | fznn0 10205 |
. . . . . . . . . 10
| |
| 48 | 43, 47 | syl 14 |
. . . . . . . . 9
|
| 49 | 37, 46, 48 | mpbir2and 946 |
. . . . . . . 8
|
| 50 | 28, 29, 49 | rspcdva 2873 |
. . . . . . 7
|
| 51 | 26 | adantr 276 |
. . . . . . . . 9
|
| 52 | fvco3 5635 |
. . . . . . . . 9
| |
| 53 | 16, 51, 52 | sylancr 414 |
. . . . . . . 8
|
| 54 | 25 | adantr 276 |
. . . . . . . . . 10
|
| 55 | f1ocnvfv2 5828 |
. . . . . . . . . 10
| |
| 56 | 4, 54, 55 | sylancr 414 |
. . . . . . . . 9
|
| 57 | 56 | fveq2d 5565 |
. . . . . . . 8
|
| 58 | 53, 57 | eqtrd 2229 |
. . . . . . 7
|
| 59 | fvco3 5635 |
. . . . . . . 8
| |
| 60 | 16, 35, 59 | sylancr 414 |
. . . . . . 7
|
| 61 | 50, 58, 60 | 3netr4d 2400 |
. . . . . 6
|
| 62 | 61 | ralrimiva 2570 |
. . . . 5
|
| 63 | fveq2 5561 |
. . . . . . . 8
| |
| 64 | 63 | neeq1d 2385 |
. . . . . . 7
|
| 65 | 64 | ralbidv 2497 |
. . . . . 6
|
| 66 | 65 | rspcev 2868 |
. . . . 5
|
| 67 | 26, 62, 66 | syl2anc 411 |
. . . 4
|
| 68 | 20, 67 | rexlimddv 2619 |
. . 3
|
| 69 | 68 | ralrimiva 2570 |
. 2
|
| 70 | id 19 |
. . . 4
| |
| 71 | dmeq 4867 |
. . . . . . 7
| |
| 72 | 71 | opeq1d 3815 |
. . . . . 6
|
| 73 | 72 | sneqd 3636 |
. . . . 5
|
| 74 | 70, 73 | uneq12d 3319 |
. . . 4
|
| 75 | 70, 74 | ifeq12d 3581 |
. . 3
|
| 76 | fveq2 5561 |
. . . . 5
| |
| 77 | imaeq2 5006 |
. . . . 5
| |
| 78 | 76, 77 | eleq12d 2267 |
. . . 4
|
| 79 | 76 | opeq2d 3816 |
. . . . . 6
|
| 80 | 79 | sneqd 3636 |
. . . . 5
|
| 81 | 80 | uneq2d 3318 |
. . . 4
|
| 82 | 78, 81 | ifbieq2d 3586 |
. . 3
|
| 83 | 75, 82 | cbvmpov 6006 |
. 2
|
| 84 | eqeq1 2203 |
. . . 4
| |
| 85 | fvoveq1 5948 |
. . . 4
| |
| 86 | 84, 85 | ifbieq2d 3586 |
. . 3
|
| 87 | 86 | cbvmptv 4130 |
. 2
|
| 88 | eqid 2196 |
. 2
| |
| 89 | fveq2 5561 |
. . 3
| |
| 90 | 89 | cbviunv 3956 |
. 2
|
| 91 | 1, 9, 69, 83, 3, 87, 88, 90 | ennnfonelemen 12663 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-er 6601 df-pm 6719 df-en 6809 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 df-uz 9619 df-fz 10101 df-seqfrec 10557 |
| This theorem is referenced by: ennnfonelemr 12665 |
| Copyright terms: Public domain | W3C validator |