| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ennnfonelemnn0 | Unicode version | ||
| Description: Lemma for ennnfone 12996. A version of ennnfonelemen 12992 expressed in
terms of |
| Ref | Expression |
|---|---|
| ennnfonelemr.dceq |
|
| ennnfonelemr.f |
|
| ennnfonelemr.n |
|
| ennnfonelemnn0.n |
|
| Ref | Expression |
|---|---|
| ennnfonelemnn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ennnfonelemr.dceq |
. 2
| |
| 2 | ennnfonelemr.f |
. . 3
| |
| 3 | ennnfonelemnn0.n |
. . . . . 6
| |
| 4 | 3 | frechashgf1o 10650 |
. . . . 5
|
| 5 | f1ofo 5579 |
. . . . 5
| |
| 6 | 4, 5 | ax-mp 5 |
. . . 4
|
| 7 | 6 | a1i 9 |
. . 3
|
| 8 | foco 5559 |
. . 3
| |
| 9 | 2, 7, 8 | syl2anc 411 |
. 2
|
| 10 | oveq2 6009 |
. . . . . . 7
| |
| 11 | 10 | raleqdv 2734 |
. . . . . 6
|
| 12 | 11 | rexbidv 2531 |
. . . . 5
|
| 13 | ennnfonelemr.n |
. . . . . 6
| |
| 14 | 13 | adantr 276 |
. . . . 5
|
| 15 | f1of 5572 |
. . . . . . . 8
| |
| 16 | 4, 15 | ax-mp 5 |
. . . . . . 7
|
| 17 | 16 | a1i 9 |
. . . . . 6
|
| 18 | simpr 110 |
. . . . . 6
| |
| 19 | 17, 18 | ffvelcdmd 5771 |
. . . . 5
|
| 20 | 12, 14, 19 | rspcdva 2912 |
. . . 4
|
| 21 | f1ocnv 5585 |
. . . . . . . 8
| |
| 22 | f1of 5572 |
. . . . . . . 8
| |
| 23 | 4, 21, 22 | mp2b 8 |
. . . . . . 7
|
| 24 | 23 | a1i 9 |
. . . . . 6
|
| 25 | simprl 529 |
. . . . . 6
| |
| 26 | 24, 25 | ffvelcdmd 5771 |
. . . . 5
|
| 27 | fveq2 5627 |
. . . . . . . . 9
| |
| 28 | 27 | neeq2d 2419 |
. . . . . . . 8
|
| 29 | simplrr 536 |
. . . . . . . 8
| |
| 30 | simpr 110 |
. . . . . . . . . . 11
| |
| 31 | 18 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 32 | peano2 4687 |
. . . . . . . . . . . 12
| |
| 33 | 31, 32 | syl 14 |
. . . . . . . . . . 11
|
| 34 | elnn 4698 |
. . . . . . . . . . 11
| |
| 35 | 30, 33, 34 | syl2anc 411 |
. . . . . . . . . 10
|
| 36 | 16 | ffvelcdmi 5769 |
. . . . . . . . . 10
|
| 37 | 35, 36 | syl 14 |
. . . . . . . . 9
|
| 38 | 0zd 9458 |
. . . . . . . . . . . . 13
| |
| 39 | 38, 3, 35, 33 | frec2uzltd 10625 |
. . . . . . . . . . . 12
|
| 40 | 30, 39 | mpd 13 |
. . . . . . . . . . 11
|
| 41 | 38, 3, 31 | frec2uzsucd 10623 |
. . . . . . . . . . 11
|
| 42 | 40, 41 | breqtrd 4109 |
. . . . . . . . . 10
|
| 43 | 19 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 44 | nn0leltp1 9510 |
. . . . . . . . . . 11
| |
| 45 | 37, 43, 44 | syl2anc 411 |
. . . . . . . . . 10
|
| 46 | 42, 45 | mpbird 167 |
. . . . . . . . 9
|
| 47 | fznn0 10309 |
. . . . . . . . . 10
| |
| 48 | 43, 47 | syl 14 |
. . . . . . . . 9
|
| 49 | 37, 46, 48 | mpbir2and 950 |
. . . . . . . 8
|
| 50 | 28, 29, 49 | rspcdva 2912 |
. . . . . . 7
|
| 51 | 26 | adantr 276 |
. . . . . . . . 9
|
| 52 | fvco3 5705 |
. . . . . . . . 9
| |
| 53 | 16, 51, 52 | sylancr 414 |
. . . . . . . 8
|
| 54 | 25 | adantr 276 |
. . . . . . . . . 10
|
| 55 | f1ocnvfv2 5902 |
. . . . . . . . . 10
| |
| 56 | 4, 54, 55 | sylancr 414 |
. . . . . . . . 9
|
| 57 | 56 | fveq2d 5631 |
. . . . . . . 8
|
| 58 | 53, 57 | eqtrd 2262 |
. . . . . . 7
|
| 59 | fvco3 5705 |
. . . . . . . 8
| |
| 60 | 16, 35, 59 | sylancr 414 |
. . . . . . 7
|
| 61 | 50, 58, 60 | 3netr4d 2433 |
. . . . . 6
|
| 62 | 61 | ralrimiva 2603 |
. . . . 5
|
| 63 | fveq2 5627 |
. . . . . . . 8
| |
| 64 | 63 | neeq1d 2418 |
. . . . . . 7
|
| 65 | 64 | ralbidv 2530 |
. . . . . 6
|
| 66 | 65 | rspcev 2907 |
. . . . 5
|
| 67 | 26, 62, 66 | syl2anc 411 |
. . . 4
|
| 68 | 20, 67 | rexlimddv 2653 |
. . 3
|
| 69 | 68 | ralrimiva 2603 |
. 2
|
| 70 | id 19 |
. . . 4
| |
| 71 | dmeq 4923 |
. . . . . . 7
| |
| 72 | 71 | opeq1d 3863 |
. . . . . 6
|
| 73 | 72 | sneqd 3679 |
. . . . 5
|
| 74 | 70, 73 | uneq12d 3359 |
. . . 4
|
| 75 | 70, 74 | ifeq12d 3622 |
. . 3
|
| 76 | fveq2 5627 |
. . . . 5
| |
| 77 | imaeq2 5064 |
. . . . 5
| |
| 78 | 76, 77 | eleq12d 2300 |
. . . 4
|
| 79 | 76 | opeq2d 3864 |
. . . . . 6
|
| 80 | 79 | sneqd 3679 |
. . . . 5
|
| 81 | 80 | uneq2d 3358 |
. . . 4
|
| 82 | 78, 81 | ifbieq2d 3627 |
. . 3
|
| 83 | 75, 82 | cbvmpov 6084 |
. 2
|
| 84 | eqeq1 2236 |
. . . 4
| |
| 85 | fvoveq1 6024 |
. . . 4
| |
| 86 | 84, 85 | ifbieq2d 3627 |
. . 3
|
| 87 | 86 | cbvmptv 4180 |
. 2
|
| 88 | eqid 2229 |
. 2
| |
| 89 | fveq2 5627 |
. . 3
| |
| 90 | 89 | cbviunv 4004 |
. 2
|
| 91 | 1, 9, 69, 83, 3, 87, 88, 90 | ennnfonelemen 12992 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-er 6680 df-pm 6798 df-en 6888 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-uz 9723 df-fz 10205 df-seqfrec 10670 |
| This theorem is referenced by: ennnfonelemr 12994 |
| Copyright terms: Public domain | W3C validator |