ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemr Unicode version

Theorem ennnfonelemr 11936
Description: Lemma for ennnfone 11938. The interesting direction, expressed in deduction form. (Contributed by Jim Kingdon, 27-Oct-2022.)
Hypotheses
Ref Expression
ennnfonelemr.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemr.f  |-  ( ph  ->  F : NN0 -onto-> A
)
ennnfonelemr.n  |-  ( ph  ->  A. n  e.  NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( F `  k )  =/=  ( F `  j )
)
Assertion
Ref Expression
ennnfonelemr  |-  ( ph  ->  A  ~~  NN )
Distinct variable groups:    y, A, x   
n, F, j, k
Allowed substitution hints:    ph( x, y, j, k, n)    A( j,
k, n)    F( x, y)

Proof of Theorem ennnfonelemr
Dummy variables  a  b  d  e  f  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemr.dceq . . 3  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
2 equequ1 1688 . . . . 5  |-  ( x  =  a  ->  (
x  =  y  <->  a  =  y ) )
32dcbid 823 . . . 4  |-  ( x  =  a  ->  (DECID  x  =  y  <-> DECID  a  =  y )
)
4 equequ2 1689 . . . . 5  |-  ( y  =  b  ->  (
a  =  y  <->  a  =  b ) )
54dcbid 823 . . . 4  |-  ( y  =  b  ->  (DECID  a  =  y  <-> DECID  a  =  b )
)
63, 5cbvral2v 2665 . . 3  |-  ( A. x  e.  A  A. y  e.  A DECID  x  =  y 
<-> 
A. a  e.  A  A. b  e.  A DECID  a  =  b )
71, 6sylib 121 . 2  |-  ( ph  ->  A. a  e.  A  A. b  e.  A DECID  a  =  b )
8 ennnfonelemr.f . 2  |-  ( ph  ->  F : NN0 -onto-> A
)
9 ennnfonelemr.n . . 3  |-  ( ph  ->  A. n  e.  NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( F `  k )  =/=  ( F `  j )
)
10 fveq2 5421 . . . . . . . . 9  |-  ( j  =  f  ->  ( F `  j )  =  ( F `  f ) )
1110neeq2d 2327 . . . . . . . 8  |-  ( j  =  f  ->  (
( F `  k
)  =/=  ( F `
 j )  <->  ( F `  k )  =/=  ( F `  f )
) )
1211cbvralv 2654 . . . . . . 7  |-  ( A. j  e.  ( 0 ... n ) ( F `  k )  =/=  ( F `  j )  <->  A. f  e.  ( 0 ... n
) ( F `  k )  =/=  ( F `  f )
)
1312rexbii 2442 . . . . . 6  |-  ( E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( F `  k )  =/=  ( F `  j )  <->  E. k  e.  NN0  A. f  e.  ( 0 ... n
) ( F `  k )  =/=  ( F `  f )
)
14 fveq2 5421 . . . . . . . . 9  |-  ( k  =  e  ->  ( F `  k )  =  ( F `  e ) )
1514neeq1d 2326 . . . . . . . 8  |-  ( k  =  e  ->  (
( F `  k
)  =/=  ( F `
 f )  <->  ( F `  e )  =/=  ( F `  f )
) )
1615ralbidv 2437 . . . . . . 7  |-  ( k  =  e  ->  ( A. f  e.  (
0 ... n ) ( F `  k )  =/=  ( F `  f )  <->  A. f  e.  ( 0 ... n
) ( F `  e )  =/=  ( F `  f )
) )
1716cbvrexv 2655 . . . . . 6  |-  ( E. k  e.  NN0  A. f  e.  ( 0 ... n
) ( F `  k )  =/=  ( F `  f )  <->  E. e  e.  NN0  A. f  e.  ( 0 ... n
) ( F `  e )  =/=  ( F `  f )
)
1813, 17bitri 183 . . . . 5  |-  ( E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( F `  k )  =/=  ( F `  j )  <->  E. e  e.  NN0  A. f  e.  ( 0 ... n
) ( F `  e )  =/=  ( F `  f )
)
1918ralbii 2441 . . . 4  |-  ( A. n  e.  NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( F `  k )  =/=  ( F `  j )  <->  A. n  e.  NN0  E. e  e.  NN0  A. f  e.  ( 0 ... n
) ( F `  e )  =/=  ( F `  f )
)
20 oveq2 5782 . . . . . . 7  |-  ( n  =  d  ->  (
0 ... n )  =  ( 0 ... d
) )
2120raleqdv 2632 . . . . . 6  |-  ( n  =  d  ->  ( A. f  e.  (
0 ... n ) ( F `  e )  =/=  ( F `  f )  <->  A. f  e.  ( 0 ... d
) ( F `  e )  =/=  ( F `  f )
) )
2221rexbidv 2438 . . . . 5  |-  ( n  =  d  ->  ( E. e  e.  NN0  A. f  e.  ( 0 ... n ) ( F `  e )  =/=  ( F `  f )  <->  E. e  e.  NN0  A. f  e.  ( 0 ... d
) ( F `  e )  =/=  ( F `  f )
) )
2322cbvralv 2654 . . . 4  |-  ( A. n  e.  NN0  E. e  e.  NN0  A. f  e.  ( 0 ... n
) ( F `  e )  =/=  ( F `  f )  <->  A. d  e.  NN0  E. e  e.  NN0  A. f  e.  ( 0 ... d
) ( F `  e )  =/=  ( F `  f )
)
2419, 23bitri 183 . . 3  |-  ( A. n  e.  NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( F `  k )  =/=  ( F `  j )  <->  A. d  e.  NN0  E. e  e.  NN0  A. f  e.  ( 0 ... d
) ( F `  e )  =/=  ( F `  f )
)
259, 24sylib 121 . 2  |-  ( ph  ->  A. d  e.  NN0  E. e  e.  NN0  A. f  e.  ( 0 ... d
) ( F `  e )  =/=  ( F `  f )
)
26 oveq1 5781 . . . 4  |-  ( c  =  a  ->  (
c  +  1 )  =  ( a  +  1 ) )
2726cbvmptv 4024 . . 3  |-  ( c  e.  ZZ  |->  ( c  +  1 ) )  =  ( a  e.  ZZ  |->  ( a  +  1 ) )
28 freceq1 6289 . . 3  |-  ( ( c  e.  ZZ  |->  ( c  +  1 ) )  =  ( a  e.  ZZ  |->  ( a  +  1 ) )  -> frec ( ( c  e.  ZZ  |->  ( c  +  1 ) ) ,  0 )  = frec ( ( a  e.  ZZ  |->  ( a  +  1 ) ) ,  0 ) )
2927, 28ax-mp 5 . 2  |- frec ( ( c  e.  ZZ  |->  ( c  +  1 ) ) ,  0 )  = frec ( ( a  e.  ZZ  |->  ( a  +  1 ) ) ,  0 )
307, 8, 25, 29ennnfonelemnn0 11935 1  |-  ( ph  ->  A  ~~  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4  DECID wdc 819    = wceq 1331    =/= wne 2308   A.wral 2416   E.wrex 2417   class class class wbr 3929    |-> cmpt 3989   -onto->wfo 5121   ` cfv 5123  (class class class)co 5774  freccfrec 6287    ~~ cen 6632   0cc0 7620   1c1 7621    + caddc 7623   NNcn 8720   NN0cn0 8977   ZZcz 9054   ...cfz 9790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-er 6429  df-pm 6545  df-en 6635  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-fz 9791  df-seqfrec 10219
This theorem is referenced by:  ennnfone  11938
  Copyright terms: Public domain W3C validator