ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemr Unicode version

Theorem ennnfonelemr 12827
Description: Lemma for ennnfone 12829. The interesting direction, expressed in deduction form. (Contributed by Jim Kingdon, 27-Oct-2022.)
Hypotheses
Ref Expression
ennnfonelemr.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemr.f  |-  ( ph  ->  F : NN0 -onto-> A
)
ennnfonelemr.n  |-  ( ph  ->  A. n  e.  NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( F `  k )  =/=  ( F `  j )
)
Assertion
Ref Expression
ennnfonelemr  |-  ( ph  ->  A  ~~  NN )
Distinct variable groups:    y, A, x   
n, F, j, k
Allowed substitution hints:    ph( x, y, j, k, n)    A( j,
k, n)    F( x, y)

Proof of Theorem ennnfonelemr
Dummy variables  a  b  d  e  f  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemr.dceq . . 3  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
2 equequ1 1735 . . . . 5  |-  ( x  =  a  ->  (
x  =  y  <->  a  =  y ) )
32dcbid 840 . . . 4  |-  ( x  =  a  ->  (DECID  x  =  y  <-> DECID  a  =  y )
)
4 equequ2 1736 . . . . 5  |-  ( y  =  b  ->  (
a  =  y  <->  a  =  b ) )
54dcbid 840 . . . 4  |-  ( y  =  b  ->  (DECID  a  =  y  <-> DECID  a  =  b )
)
63, 5cbvral2v 2751 . . 3  |-  ( A. x  e.  A  A. y  e.  A DECID  x  =  y 
<-> 
A. a  e.  A  A. b  e.  A DECID  a  =  b )
71, 6sylib 122 . 2  |-  ( ph  ->  A. a  e.  A  A. b  e.  A DECID  a  =  b )
8 ennnfonelemr.f . 2  |-  ( ph  ->  F : NN0 -onto-> A
)
9 ennnfonelemr.n . . 3  |-  ( ph  ->  A. n  e.  NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( F `  k )  =/=  ( F `  j )
)
10 fveq2 5578 . . . . . . . . 9  |-  ( j  =  f  ->  ( F `  j )  =  ( F `  f ) )
1110neeq2d 2395 . . . . . . . 8  |-  ( j  =  f  ->  (
( F `  k
)  =/=  ( F `
 j )  <->  ( F `  k )  =/=  ( F `  f )
) )
1211cbvralv 2738 . . . . . . 7  |-  ( A. j  e.  ( 0 ... n ) ( F `  k )  =/=  ( F `  j )  <->  A. f  e.  ( 0 ... n
) ( F `  k )  =/=  ( F `  f )
)
1312rexbii 2513 . . . . . 6  |-  ( E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( F `  k )  =/=  ( F `  j )  <->  E. k  e.  NN0  A. f  e.  ( 0 ... n
) ( F `  k )  =/=  ( F `  f )
)
14 fveq2 5578 . . . . . . . . 9  |-  ( k  =  e  ->  ( F `  k )  =  ( F `  e ) )
1514neeq1d 2394 . . . . . . . 8  |-  ( k  =  e  ->  (
( F `  k
)  =/=  ( F `
 f )  <->  ( F `  e )  =/=  ( F `  f )
) )
1615ralbidv 2506 . . . . . . 7  |-  ( k  =  e  ->  ( A. f  e.  (
0 ... n ) ( F `  k )  =/=  ( F `  f )  <->  A. f  e.  ( 0 ... n
) ( F `  e )  =/=  ( F `  f )
) )
1716cbvrexv 2739 . . . . . 6  |-  ( E. k  e.  NN0  A. f  e.  ( 0 ... n
) ( F `  k )  =/=  ( F `  f )  <->  E. e  e.  NN0  A. f  e.  ( 0 ... n
) ( F `  e )  =/=  ( F `  f )
)
1813, 17bitri 184 . . . . 5  |-  ( E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( F `  k )  =/=  ( F `  j )  <->  E. e  e.  NN0  A. f  e.  ( 0 ... n
) ( F `  e )  =/=  ( F `  f )
)
1918ralbii 2512 . . . 4  |-  ( A. n  e.  NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( F `  k )  =/=  ( F `  j )  <->  A. n  e.  NN0  E. e  e.  NN0  A. f  e.  ( 0 ... n
) ( F `  e )  =/=  ( F `  f )
)
20 oveq2 5954 . . . . . . 7  |-  ( n  =  d  ->  (
0 ... n )  =  ( 0 ... d
) )
2120raleqdv 2708 . . . . . 6  |-  ( n  =  d  ->  ( A. f  e.  (
0 ... n ) ( F `  e )  =/=  ( F `  f )  <->  A. f  e.  ( 0 ... d
) ( F `  e )  =/=  ( F `  f )
) )
2221rexbidv 2507 . . . . 5  |-  ( n  =  d  ->  ( E. e  e.  NN0  A. f  e.  ( 0 ... n ) ( F `  e )  =/=  ( F `  f )  <->  E. e  e.  NN0  A. f  e.  ( 0 ... d
) ( F `  e )  =/=  ( F `  f )
) )
2322cbvralv 2738 . . . 4  |-  ( A. n  e.  NN0  E. e  e.  NN0  A. f  e.  ( 0 ... n
) ( F `  e )  =/=  ( F `  f )  <->  A. d  e.  NN0  E. e  e.  NN0  A. f  e.  ( 0 ... d
) ( F `  e )  =/=  ( F `  f )
)
2419, 23bitri 184 . . 3  |-  ( A. n  e.  NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( F `  k )  =/=  ( F `  j )  <->  A. d  e.  NN0  E. e  e.  NN0  A. f  e.  ( 0 ... d
) ( F `  e )  =/=  ( F `  f )
)
259, 24sylib 122 . 2  |-  ( ph  ->  A. d  e.  NN0  E. e  e.  NN0  A. f  e.  ( 0 ... d
) ( F `  e )  =/=  ( F `  f )
)
26 oveq1 5953 . . . 4  |-  ( c  =  a  ->  (
c  +  1 )  =  ( a  +  1 ) )
2726cbvmptv 4141 . . 3  |-  ( c  e.  ZZ  |->  ( c  +  1 ) )  =  ( a  e.  ZZ  |->  ( a  +  1 ) )
28 freceq1 6480 . . 3  |-  ( ( c  e.  ZZ  |->  ( c  +  1 ) )  =  ( a  e.  ZZ  |->  ( a  +  1 ) )  -> frec ( ( c  e.  ZZ  |->  ( c  +  1 ) ) ,  0 )  = frec ( ( a  e.  ZZ  |->  ( a  +  1 ) ) ,  0 ) )
2927, 28ax-mp 5 . 2  |- frec ( ( c  e.  ZZ  |->  ( c  +  1 ) ) ,  0 )  = frec ( ( a  e.  ZZ  |->  ( a  +  1 ) ) ,  0 )
307, 8, 25, 29ennnfonelemnn0 12826 1  |-  ( ph  ->  A  ~~  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4  DECID wdc 836    = wceq 1373    =/= wne 2376   A.wral 2484   E.wrex 2485   class class class wbr 4045    |-> cmpt 4106   -onto->wfo 5270   ` cfv 5272  (class class class)co 5946  freccfrec 6478    ~~ cen 6827   0cc0 7927   1c1 7928    + caddc 7930   NNcn 9038   NN0cn0 9297   ZZcz 9374   ...cfz 10132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-er 6622  df-pm 6740  df-en 6830  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-inn 9039  df-n0 9298  df-z 9375  df-uz 9651  df-fz 10133  df-seqfrec 10595
This theorem is referenced by:  ennnfone  12829
  Copyright terms: Public domain W3C validator