ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemr Unicode version

Theorem ennnfonelemr 11972
Description: Lemma for ennnfone 11974. The interesting direction, expressed in deduction form. (Contributed by Jim Kingdon, 27-Oct-2022.)
Hypotheses
Ref Expression
ennnfonelemr.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemr.f  |-  ( ph  ->  F : NN0 -onto-> A
)
ennnfonelemr.n  |-  ( ph  ->  A. n  e.  NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( F `  k )  =/=  ( F `  j )
)
Assertion
Ref Expression
ennnfonelemr  |-  ( ph  ->  A  ~~  NN )
Distinct variable groups:    y, A, x   
n, F, j, k
Allowed substitution hints:    ph( x, y, j, k, n)    A( j,
k, n)    F( x, y)

Proof of Theorem ennnfonelemr
Dummy variables  a  b  d  e  f  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemr.dceq . . 3  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
2 equequ1 1689 . . . . 5  |-  ( x  =  a  ->  (
x  =  y  <->  a  =  y ) )
32dcbid 824 . . . 4  |-  ( x  =  a  ->  (DECID  x  =  y  <-> DECID  a  =  y )
)
4 equequ2 1690 . . . . 5  |-  ( y  =  b  ->  (
a  =  y  <->  a  =  b ) )
54dcbid 824 . . . 4  |-  ( y  =  b  ->  (DECID  a  =  y  <-> DECID  a  =  b )
)
63, 5cbvral2v 2668 . . 3  |-  ( A. x  e.  A  A. y  e.  A DECID  x  =  y 
<-> 
A. a  e.  A  A. b  e.  A DECID  a  =  b )
71, 6sylib 121 . 2  |-  ( ph  ->  A. a  e.  A  A. b  e.  A DECID  a  =  b )
8 ennnfonelemr.f . 2  |-  ( ph  ->  F : NN0 -onto-> A
)
9 ennnfonelemr.n . . 3  |-  ( ph  ->  A. n  e.  NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( F `  k )  =/=  ( F `  j )
)
10 fveq2 5429 . . . . . . . . 9  |-  ( j  =  f  ->  ( F `  j )  =  ( F `  f ) )
1110neeq2d 2328 . . . . . . . 8  |-  ( j  =  f  ->  (
( F `  k
)  =/=  ( F `
 j )  <->  ( F `  k )  =/=  ( F `  f )
) )
1211cbvralv 2657 . . . . . . 7  |-  ( A. j  e.  ( 0 ... n ) ( F `  k )  =/=  ( F `  j )  <->  A. f  e.  ( 0 ... n
) ( F `  k )  =/=  ( F `  f )
)
1312rexbii 2445 . . . . . 6  |-  ( E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( F `  k )  =/=  ( F `  j )  <->  E. k  e.  NN0  A. f  e.  ( 0 ... n
) ( F `  k )  =/=  ( F `  f )
)
14 fveq2 5429 . . . . . . . . 9  |-  ( k  =  e  ->  ( F `  k )  =  ( F `  e ) )
1514neeq1d 2327 . . . . . . . 8  |-  ( k  =  e  ->  (
( F `  k
)  =/=  ( F `
 f )  <->  ( F `  e )  =/=  ( F `  f )
) )
1615ralbidv 2438 . . . . . . 7  |-  ( k  =  e  ->  ( A. f  e.  (
0 ... n ) ( F `  k )  =/=  ( F `  f )  <->  A. f  e.  ( 0 ... n
) ( F `  e )  =/=  ( F `  f )
) )
1716cbvrexv 2658 . . . . . 6  |-  ( E. k  e.  NN0  A. f  e.  ( 0 ... n
) ( F `  k )  =/=  ( F `  f )  <->  E. e  e.  NN0  A. f  e.  ( 0 ... n
) ( F `  e )  =/=  ( F `  f )
)
1813, 17bitri 183 . . . . 5  |-  ( E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( F `  k )  =/=  ( F `  j )  <->  E. e  e.  NN0  A. f  e.  ( 0 ... n
) ( F `  e )  =/=  ( F `  f )
)
1918ralbii 2444 . . . 4  |-  ( A. n  e.  NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( F `  k )  =/=  ( F `  j )  <->  A. n  e.  NN0  E. e  e.  NN0  A. f  e.  ( 0 ... n
) ( F `  e )  =/=  ( F `  f )
)
20 oveq2 5790 . . . . . . 7  |-  ( n  =  d  ->  (
0 ... n )  =  ( 0 ... d
) )
2120raleqdv 2635 . . . . . 6  |-  ( n  =  d  ->  ( A. f  e.  (
0 ... n ) ( F `  e )  =/=  ( F `  f )  <->  A. f  e.  ( 0 ... d
) ( F `  e )  =/=  ( F `  f )
) )
2221rexbidv 2439 . . . . 5  |-  ( n  =  d  ->  ( E. e  e.  NN0  A. f  e.  ( 0 ... n ) ( F `  e )  =/=  ( F `  f )  <->  E. e  e.  NN0  A. f  e.  ( 0 ... d
) ( F `  e )  =/=  ( F `  f )
) )
2322cbvralv 2657 . . . 4  |-  ( A. n  e.  NN0  E. e  e.  NN0  A. f  e.  ( 0 ... n
) ( F `  e )  =/=  ( F `  f )  <->  A. d  e.  NN0  E. e  e.  NN0  A. f  e.  ( 0 ... d
) ( F `  e )  =/=  ( F `  f )
)
2419, 23bitri 183 . . 3  |-  ( A. n  e.  NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( F `  k )  =/=  ( F `  j )  <->  A. d  e.  NN0  E. e  e.  NN0  A. f  e.  ( 0 ... d
) ( F `  e )  =/=  ( F `  f )
)
259, 24sylib 121 . 2  |-  ( ph  ->  A. d  e.  NN0  E. e  e.  NN0  A. f  e.  ( 0 ... d
) ( F `  e )  =/=  ( F `  f )
)
26 oveq1 5789 . . . 4  |-  ( c  =  a  ->  (
c  +  1 )  =  ( a  +  1 ) )
2726cbvmptv 4032 . . 3  |-  ( c  e.  ZZ  |->  ( c  +  1 ) )  =  ( a  e.  ZZ  |->  ( a  +  1 ) )
28 freceq1 6297 . . 3  |-  ( ( c  e.  ZZ  |->  ( c  +  1 ) )  =  ( a  e.  ZZ  |->  ( a  +  1 ) )  -> frec ( ( c  e.  ZZ  |->  ( c  +  1 ) ) ,  0 )  = frec ( ( a  e.  ZZ  |->  ( a  +  1 ) ) ,  0 ) )
2927, 28ax-mp 5 . 2  |- frec ( ( c  e.  ZZ  |->  ( c  +  1 ) ) ,  0 )  = frec ( ( a  e.  ZZ  |->  ( a  +  1 ) ) ,  0 )
307, 8, 25, 29ennnfonelemnn0 11971 1  |-  ( ph  ->  A  ~~  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4  DECID wdc 820    = wceq 1332    =/= wne 2309   A.wral 2417   E.wrex 2418   class class class wbr 3937    |-> cmpt 3997   -onto->wfo 5129   ` cfv 5131  (class class class)co 5782  freccfrec 6295    ~~ cen 6640   0cc0 7644   1c1 7645    + caddc 7647   NNcn 8744   NN0cn0 9001   ZZcz 9078   ...cfz 9821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-er 6437  df-pm 6553  df-en 6643  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822  df-seqfrec 10250
This theorem is referenced by:  ennnfone  11974
  Copyright terms: Public domain W3C validator