ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemr Unicode version

Theorem ennnfonelemr 12350
Description: Lemma for ennnfone 12352. The interesting direction, expressed in deduction form. (Contributed by Jim Kingdon, 27-Oct-2022.)
Hypotheses
Ref Expression
ennnfonelemr.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemr.f  |-  ( ph  ->  F : NN0 -onto-> A
)
ennnfonelemr.n  |-  ( ph  ->  A. n  e.  NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( F `  k )  =/=  ( F `  j )
)
Assertion
Ref Expression
ennnfonelemr  |-  ( ph  ->  A  ~~  NN )
Distinct variable groups:    y, A, x   
n, F, j, k
Allowed substitution hints:    ph( x, y, j, k, n)    A( j,
k, n)    F( x, y)

Proof of Theorem ennnfonelemr
Dummy variables  a  b  d  e  f  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemr.dceq . . 3  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
2 equequ1 1699 . . . . 5  |-  ( x  =  a  ->  (
x  =  y  <->  a  =  y ) )
32dcbid 828 . . . 4  |-  ( x  =  a  ->  (DECID  x  =  y  <-> DECID  a  =  y )
)
4 equequ2 1700 . . . . 5  |-  ( y  =  b  ->  (
a  =  y  <->  a  =  b ) )
54dcbid 828 . . . 4  |-  ( y  =  b  ->  (DECID  a  =  y  <-> DECID  a  =  b )
)
63, 5cbvral2v 2703 . . 3  |-  ( A. x  e.  A  A. y  e.  A DECID  x  =  y 
<-> 
A. a  e.  A  A. b  e.  A DECID  a  =  b )
71, 6sylib 121 . 2  |-  ( ph  ->  A. a  e.  A  A. b  e.  A DECID  a  =  b )
8 ennnfonelemr.f . 2  |-  ( ph  ->  F : NN0 -onto-> A
)
9 ennnfonelemr.n . . 3  |-  ( ph  ->  A. n  e.  NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( F `  k )  =/=  ( F `  j )
)
10 fveq2 5483 . . . . . . . . 9  |-  ( j  =  f  ->  ( F `  j )  =  ( F `  f ) )
1110neeq2d 2353 . . . . . . . 8  |-  ( j  =  f  ->  (
( F `  k
)  =/=  ( F `
 j )  <->  ( F `  k )  =/=  ( F `  f )
) )
1211cbvralv 2690 . . . . . . 7  |-  ( A. j  e.  ( 0 ... n ) ( F `  k )  =/=  ( F `  j )  <->  A. f  e.  ( 0 ... n
) ( F `  k )  =/=  ( F `  f )
)
1312rexbii 2471 . . . . . 6  |-  ( E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( F `  k )  =/=  ( F `  j )  <->  E. k  e.  NN0  A. f  e.  ( 0 ... n
) ( F `  k )  =/=  ( F `  f )
)
14 fveq2 5483 . . . . . . . . 9  |-  ( k  =  e  ->  ( F `  k )  =  ( F `  e ) )
1514neeq1d 2352 . . . . . . . 8  |-  ( k  =  e  ->  (
( F `  k
)  =/=  ( F `
 f )  <->  ( F `  e )  =/=  ( F `  f )
) )
1615ralbidv 2464 . . . . . . 7  |-  ( k  =  e  ->  ( A. f  e.  (
0 ... n ) ( F `  k )  =/=  ( F `  f )  <->  A. f  e.  ( 0 ... n
) ( F `  e )  =/=  ( F `  f )
) )
1716cbvrexv 2691 . . . . . 6  |-  ( E. k  e.  NN0  A. f  e.  ( 0 ... n
) ( F `  k )  =/=  ( F `  f )  <->  E. e  e.  NN0  A. f  e.  ( 0 ... n
) ( F `  e )  =/=  ( F `  f )
)
1813, 17bitri 183 . . . . 5  |-  ( E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( F `  k )  =/=  ( F `  j )  <->  E. e  e.  NN0  A. f  e.  ( 0 ... n
) ( F `  e )  =/=  ( F `  f )
)
1918ralbii 2470 . . . 4  |-  ( A. n  e.  NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( F `  k )  =/=  ( F `  j )  <->  A. n  e.  NN0  E. e  e.  NN0  A. f  e.  ( 0 ... n
) ( F `  e )  =/=  ( F `  f )
)
20 oveq2 5847 . . . . . . 7  |-  ( n  =  d  ->  (
0 ... n )  =  ( 0 ... d
) )
2120raleqdv 2665 . . . . . 6  |-  ( n  =  d  ->  ( A. f  e.  (
0 ... n ) ( F `  e )  =/=  ( F `  f )  <->  A. f  e.  ( 0 ... d
) ( F `  e )  =/=  ( F `  f )
) )
2221rexbidv 2465 . . . . 5  |-  ( n  =  d  ->  ( E. e  e.  NN0  A. f  e.  ( 0 ... n ) ( F `  e )  =/=  ( F `  f )  <->  E. e  e.  NN0  A. f  e.  ( 0 ... d
) ( F `  e )  =/=  ( F `  f )
) )
2322cbvralv 2690 . . . 4  |-  ( A. n  e.  NN0  E. e  e.  NN0  A. f  e.  ( 0 ... n
) ( F `  e )  =/=  ( F `  f )  <->  A. d  e.  NN0  E. e  e.  NN0  A. f  e.  ( 0 ... d
) ( F `  e )  =/=  ( F `  f )
)
2419, 23bitri 183 . . 3  |-  ( A. n  e.  NN0  E. k  e.  NN0  A. j  e.  ( 0 ... n
) ( F `  k )  =/=  ( F `  j )  <->  A. d  e.  NN0  E. e  e.  NN0  A. f  e.  ( 0 ... d
) ( F `  e )  =/=  ( F `  f )
)
259, 24sylib 121 . 2  |-  ( ph  ->  A. d  e.  NN0  E. e  e.  NN0  A. f  e.  ( 0 ... d
) ( F `  e )  =/=  ( F `  f )
)
26 oveq1 5846 . . . 4  |-  ( c  =  a  ->  (
c  +  1 )  =  ( a  +  1 ) )
2726cbvmptv 4075 . . 3  |-  ( c  e.  ZZ  |->  ( c  +  1 ) )  =  ( a  e.  ZZ  |->  ( a  +  1 ) )
28 freceq1 6354 . . 3  |-  ( ( c  e.  ZZ  |->  ( c  +  1 ) )  =  ( a  e.  ZZ  |->  ( a  +  1 ) )  -> frec ( ( c  e.  ZZ  |->  ( c  +  1 ) ) ,  0 )  = frec ( ( a  e.  ZZ  |->  ( a  +  1 ) ) ,  0 ) )
2927, 28ax-mp 5 . 2  |- frec ( ( c  e.  ZZ  |->  ( c  +  1 ) ) ,  0 )  = frec ( ( a  e.  ZZ  |->  ( a  +  1 ) ) ,  0 )
307, 8, 25, 29ennnfonelemnn0 12349 1  |-  ( ph  ->  A  ~~  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4  DECID wdc 824    = wceq 1342    =/= wne 2334   A.wral 2442   E.wrex 2443   class class class wbr 3979    |-> cmpt 4040   -onto->wfo 5183   ` cfv 5185  (class class class)co 5839  freccfrec 6352    ~~ cen 6698   0cc0 7747   1c1 7748    + caddc 7750   NNcn 8851   NN0cn0 9108   ZZcz 9185   ...cfz 9938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4094  ax-sep 4097  ax-nul 4105  ax-pow 4150  ax-pr 4184  ax-un 4408  ax-setind 4511  ax-iinf 4562  ax-cnex 7838  ax-resscn 7839  ax-1cn 7840  ax-1re 7841  ax-icn 7842  ax-addcl 7843  ax-addrcl 7844  ax-mulcl 7845  ax-addcom 7847  ax-addass 7849  ax-distr 7851  ax-i2m1 7852  ax-0lt1 7853  ax-0id 7855  ax-rnegex 7856  ax-cnre 7858  ax-pre-ltirr 7859  ax-pre-ltwlin 7860  ax-pre-lttrn 7861  ax-pre-ltadd 7863
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2726  df-sbc 2950  df-csb 3044  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3408  df-if 3519  df-pw 3558  df-sn 3579  df-pr 3580  df-op 3582  df-uni 3787  df-int 3822  df-iun 3865  df-br 3980  df-opab 4041  df-mpt 4042  df-tr 4078  df-id 4268  df-iord 4341  df-on 4343  df-ilim 4344  df-suc 4346  df-iom 4565  df-xp 4607  df-rel 4608  df-cnv 4609  df-co 4610  df-dm 4611  df-rn 4612  df-res 4613  df-ima 4614  df-iota 5150  df-fun 5187  df-fn 5188  df-f 5189  df-f1 5190  df-fo 5191  df-f1o 5192  df-fv 5193  df-riota 5795  df-ov 5842  df-oprab 5843  df-mpo 5844  df-1st 6103  df-2nd 6104  df-recs 6267  df-frec 6353  df-er 6495  df-pm 6611  df-en 6701  df-pnf 7929  df-mnf 7930  df-xr 7931  df-ltxr 7932  df-le 7933  df-sub 8065  df-neg 8066  df-inn 8852  df-n0 9109  df-z 9186  df-uz 9461  df-fz 9939  df-seqfrec 10375
This theorem is referenced by:  ennnfone  12352
  Copyright terms: Public domain W3C validator