ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfoneleminc Unicode version

Theorem ennnfoneleminc 11958
Description: Lemma for ennnfone 11972. We only add elements to  H as the index increases. (Contributed by Jim Kingdon, 21-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
ennnfoneleminc.p  |-  ( ph  ->  P  e.  NN0 )
ennnfoneleminc.q  |-  ( ph  ->  Q  e.  NN0 )
ennnfoneleminc.le  |-  ( ph  ->  P  <_  Q )
Assertion
Ref Expression
ennnfoneleminc  |-  ( ph  ->  ( H `  P
)  C_  ( H `  Q ) )
Distinct variable groups:    x, A, y   
n, F, j, k   
x, F, y    x, H, y    x, N, y   
x, P, y    ph, x, y
Allowed substitution hints:    ph( j, k, n)    A( j, k, n)    P( j, k, n)    Q( x, y, j, k, n)    G( x, y, j, k, n)    H( j, k, n)    J( x, y, j, k, n)    N( j, k, n)

Proof of Theorem ennnfoneleminc
Dummy variables  c  a  b  r  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfoneleminc.p . . . 4  |-  ( ph  ->  P  e.  NN0 )
21nn0zd 9194 . . 3  |-  ( ph  ->  P  e.  ZZ )
3 ennnfoneleminc.q . . . 4  |-  ( ph  ->  Q  e.  NN0 )
43nn0zd 9194 . . 3  |-  ( ph  ->  Q  e.  ZZ )
5 ennnfoneleminc.le . . 3  |-  ( ph  ->  P  <_  Q )
62, 4, 53jca 1162 . 2  |-  ( ph  ->  ( P  e.  ZZ  /\  Q  e.  ZZ  /\  P  <_  Q ) )
7 fveq2 5428 . . . . 5  |-  ( w  =  P  ->  ( H `  w )  =  ( H `  P ) )
87sseq2d 3131 . . . 4  |-  ( w  =  P  ->  (
( H `  P
)  C_  ( H `  w )  <->  ( H `  P )  C_  ( H `  P )
) )
98imbi2d 229 . . 3  |-  ( w  =  P  ->  (
( ph  ->  ( H `
 P )  C_  ( H `  w ) )  <->  ( ph  ->  ( H `  P ) 
C_  ( H `  P ) ) ) )
10 fveq2 5428 . . . . 5  |-  ( w  =  r  ->  ( H `  w )  =  ( H `  r ) )
1110sseq2d 3131 . . . 4  |-  ( w  =  r  ->  (
( H `  P
)  C_  ( H `  w )  <->  ( H `  P )  C_  ( H `  r )
) )
1211imbi2d 229 . . 3  |-  ( w  =  r  ->  (
( ph  ->  ( H `
 P )  C_  ( H `  w ) )  <->  ( ph  ->  ( H `  P ) 
C_  ( H `  r ) ) ) )
13 fveq2 5428 . . . . 5  |-  ( w  =  ( r  +  1 )  ->  ( H `  w )  =  ( H `  ( r  +  1 ) ) )
1413sseq2d 3131 . . . 4  |-  ( w  =  ( r  +  1 )  ->  (
( H `  P
)  C_  ( H `  w )  <->  ( H `  P )  C_  ( H `  ( r  +  1 ) ) ) )
1514imbi2d 229 . . 3  |-  ( w  =  ( r  +  1 )  ->  (
( ph  ->  ( H `
 P )  C_  ( H `  w ) )  <->  ( ph  ->  ( H `  P ) 
C_  ( H `  ( r  +  1 ) ) ) ) )
16 fveq2 5428 . . . . 5  |-  ( w  =  Q  ->  ( H `  w )  =  ( H `  Q ) )
1716sseq2d 3131 . . . 4  |-  ( w  =  Q  ->  (
( H `  P
)  C_  ( H `  w )  <->  ( H `  P )  C_  ( H `  Q )
) )
1817imbi2d 229 . . 3  |-  ( w  =  Q  ->  (
( ph  ->  ( H `
 P )  C_  ( H `  w ) )  <->  ( ph  ->  ( H `  P ) 
C_  ( H `  Q ) ) ) )
19 ssidd 3122 . . . 4  |-  ( P  e.  ZZ  ->  ( H `  P )  C_  ( H `  P
) )
2019a1d 22 . . 3  |-  ( P  e.  ZZ  ->  ( ph  ->  ( H `  P )  C_  ( H `  P )
) )
21 simpr 109 . . . . . . 7  |-  ( ( ( ph  /\  ( P  e.  ZZ  /\  r  e.  ZZ  /\  P  <_ 
r ) )  /\  ( H `  P ) 
C_  ( H `  r ) )  -> 
( H `  P
)  C_  ( H `  r ) )
22 ennnfonelemh.dceq . . . . . . . . 9  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
2322ad2antrr 480 . . . . . . . 8  |-  ( ( ( ph  /\  ( P  e.  ZZ  /\  r  e.  ZZ  /\  P  <_ 
r ) )  /\  ( H `  P ) 
C_  ( H `  r ) )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
24 ennnfonelemh.f . . . . . . . . 9  |-  ( ph  ->  F : om -onto-> A
)
2524ad2antrr 480 . . . . . . . 8  |-  ( ( ( ph  /\  ( P  e.  ZZ  /\  r  e.  ZZ  /\  P  <_ 
r ) )  /\  ( H `  P ) 
C_  ( H `  r ) )  ->  F : om -onto-> A )
26 ennnfonelemh.ne . . . . . . . . . 10  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
2726ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ph  /\  ( P  e.  ZZ  /\  r  e.  ZZ  /\  P  <_ 
r ) )  /\  ( H `  P ) 
C_  ( H `  r ) )  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
28 fveq2 5428 . . . . . . . . . . . . . . 15  |-  ( j  =  c  ->  ( F `  j )  =  ( F `  c ) )
2928neeq2d 2328 . . . . . . . . . . . . . 14  |-  ( j  =  c  ->  (
( F `  k
)  =/=  ( F `
 j )  <->  ( F `  k )  =/=  ( F `  c )
) )
3029cbvralv 2657 . . . . . . . . . . . . 13  |-  ( A. j  e.  suc  n ( F `  k )  =/=  ( F `  j )  <->  A. c  e.  suc  n ( F `
 k )  =/=  ( F `  c
) )
3130rexbii 2445 . . . . . . . . . . . 12  |-  ( E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j )  <->  E. k  e.  om  A. c  e. 
suc  n ( F `
 k )  =/=  ( F `  c
) )
32 fveq2 5428 . . . . . . . . . . . . . . 15  |-  ( k  =  b  ->  ( F `  k )  =  ( F `  b ) )
3332neeq1d 2327 . . . . . . . . . . . . . 14  |-  ( k  =  b  ->  (
( F `  k
)  =/=  ( F `
 c )  <->  ( F `  b )  =/=  ( F `  c )
) )
3433ralbidv 2438 . . . . . . . . . . . . 13  |-  ( k  =  b  ->  ( A. c  e.  suc  n ( F `  k )  =/=  ( F `  c )  <->  A. c  e.  suc  n
( F `  b
)  =/=  ( F `
 c ) ) )
3534cbvrexv 2658 . . . . . . . . . . . 12  |-  ( E. k  e.  om  A. c  e.  suc  n ( F `  k )  =/=  ( F `  c )  <->  E. b  e.  om  A. c  e. 
suc  n ( F `
 b )  =/=  ( F `  c
) )
3631, 35bitri 183 . . . . . . . . . . 11  |-  ( E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j )  <->  E. b  e.  om  A. c  e. 
suc  n ( F `
 b )  =/=  ( F `  c
) )
3736ralbii 2444 . . . . . . . . . 10  |-  ( A. n  e.  om  E. k  e.  om  A. j  e. 
suc  n ( F `
 k )  =/=  ( F `  j
)  <->  A. n  e.  om  E. b  e.  om  A. c  e.  suc  n ( F `  b )  =/=  ( F `  c ) )
38 suceq 4331 . . . . . . . . . . . . 13  |-  ( n  =  a  ->  suc  n  =  suc  a )
3938raleqdv 2635 . . . . . . . . . . . 12  |-  ( n  =  a  ->  ( A. c  e.  suc  n ( F `  b )  =/=  ( F `  c )  <->  A. c  e.  suc  a
( F `  b
)  =/=  ( F `
 c ) ) )
4039rexbidv 2439 . . . . . . . . . . 11  |-  ( n  =  a  ->  ( E. b  e.  om  A. c  e.  suc  n
( F `  b
)  =/=  ( F `
 c )  <->  E. b  e.  om  A. c  e. 
suc  a ( F `
 b )  =/=  ( F `  c
) ) )
4140cbvralv 2657 . . . . . . . . . 10  |-  ( A. n  e.  om  E. b  e.  om  A. c  e. 
suc  n ( F `
 b )  =/=  ( F `  c
)  <->  A. a  e.  om  E. b  e.  om  A. c  e.  suc  a ( F `  b )  =/=  ( F `  c ) )
4237, 41bitri 183 . . . . . . . . 9  |-  ( A. n  e.  om  E. k  e.  om  A. j  e. 
suc  n ( F `
 k )  =/=  ( F `  j
)  <->  A. a  e.  om  E. b  e.  om  A. c  e.  suc  a ( F `  b )  =/=  ( F `  c ) )
4327, 42sylib 121 . . . . . . . 8  |-  ( ( ( ph  /\  ( P  e.  ZZ  /\  r  e.  ZZ  /\  P  <_ 
r ) )  /\  ( H `  P ) 
C_  ( H `  r ) )  ->  A. a  e.  om  E. b  e.  om  A. c  e.  suc  a ( F `  b )  =/=  ( F `  c ) )
44 ennnfonelemh.g . . . . . . . 8  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
45 ennnfonelemh.n . . . . . . . 8  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
46 ennnfonelemh.j . . . . . . . 8  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
47 ennnfonelemh.h . . . . . . . 8  |-  H  =  seq 0 ( G ,  J )
48 simplr2 1025 . . . . . . . . 9  |-  ( ( ( ph  /\  ( P  e.  ZZ  /\  r  e.  ZZ  /\  P  <_ 
r ) )  /\  ( H `  P ) 
C_  ( H `  r ) )  -> 
r  e.  ZZ )
49 0red 7790 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( P  e.  ZZ  /\  r  e.  ZZ  /\  P  <_ 
r ) )  /\  ( H `  P ) 
C_  ( H `  r ) )  -> 
0  e.  RR )
501nn0red 9054 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  RR )
5150ad2antrr 480 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( P  e.  ZZ  /\  r  e.  ZZ  /\  P  <_ 
r ) )  /\  ( H `  P ) 
C_  ( H `  r ) )  ->  P  e.  RR )
5248zred 9196 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( P  e.  ZZ  /\  r  e.  ZZ  /\  P  <_ 
r ) )  /\  ( H `  P ) 
C_  ( H `  r ) )  -> 
r  e.  RR )
531nn0ge0d 9056 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  P )
5453ad2antrr 480 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( P  e.  ZZ  /\  r  e.  ZZ  /\  P  <_ 
r ) )  /\  ( H `  P ) 
C_  ( H `  r ) )  -> 
0  <_  P )
55 simplr3 1026 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( P  e.  ZZ  /\  r  e.  ZZ  /\  P  <_ 
r ) )  /\  ( H `  P ) 
C_  ( H `  r ) )  ->  P  <_  r )
5649, 51, 52, 54, 55letrd 7909 . . . . . . . . 9  |-  ( ( ( ph  /\  ( P  e.  ZZ  /\  r  e.  ZZ  /\  P  <_ 
r ) )  /\  ( H `  P ) 
C_  ( H `  r ) )  -> 
0  <_  r )
57 elnn0z 9090 . . . . . . . . 9  |-  ( r  e.  NN0  <->  ( r  e.  ZZ  /\  0  <_ 
r ) )
5848, 56, 57sylanbrc 414 . . . . . . . 8  |-  ( ( ( ph  /\  ( P  e.  ZZ  /\  r  e.  ZZ  /\  P  <_ 
r ) )  /\  ( H `  P ) 
C_  ( H `  r ) )  -> 
r  e.  NN0 )
5923, 25, 43, 44, 45, 46, 47, 58ennnfonelemss 11957 . . . . . . 7  |-  ( ( ( ph  /\  ( P  e.  ZZ  /\  r  e.  ZZ  /\  P  <_ 
r ) )  /\  ( H `  P ) 
C_  ( H `  r ) )  -> 
( H `  r
)  C_  ( H `  ( r  +  1 ) ) )
6021, 59sstrd 3111 . . . . . 6  |-  ( ( ( ph  /\  ( P  e.  ZZ  /\  r  e.  ZZ  /\  P  <_ 
r ) )  /\  ( H `  P ) 
C_  ( H `  r ) )  -> 
( H `  P
)  C_  ( H `  ( r  +  1 ) ) )
6160ex 114 . . . . 5  |-  ( (
ph  /\  ( P  e.  ZZ  /\  r  e.  ZZ  /\  P  <_ 
r ) )  -> 
( ( H `  P )  C_  ( H `  r )  ->  ( H `  P
)  C_  ( H `  ( r  +  1 ) ) ) )
6261expcom 115 . . . 4  |-  ( ( P  e.  ZZ  /\  r  e.  ZZ  /\  P  <_  r )  ->  ( ph  ->  ( ( H `
 P )  C_  ( H `  r )  ->  ( H `  P )  C_  ( H `  ( r  +  1 ) ) ) ) )
6362a2d 26 . . 3  |-  ( ( P  e.  ZZ  /\  r  e.  ZZ  /\  P  <_  r )  ->  (
( ph  ->  ( H `
 P )  C_  ( H `  r ) )  ->  ( ph  ->  ( H `  P
)  C_  ( H `  ( r  +  1 ) ) ) ) )
649, 12, 15, 18, 20, 63uzind 9185 . 2  |-  ( ( P  e.  ZZ  /\  Q  e.  ZZ  /\  P  <_  Q )  ->  ( ph  ->  ( H `  P )  C_  ( H `  Q )
) )
656, 64mpcom 36 1  |-  ( ph  ->  ( H `  P
)  C_  ( H `  Q ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103  DECID wdc 820    /\ w3a 963    = wceq 1332    e. wcel 1481    =/= wne 2309   A.wral 2417   E.wrex 2418    u. cun 3073    C_ wss 3075   (/)c0 3367   ifcif 3478   {csn 3531   <.cop 3534   class class class wbr 3936    |-> cmpt 3996   suc csuc 4294   omcom 4511   `'ccnv 4545   dom cdm 4546   "cima 4549   -onto->wfo 5128   ` cfv 5130  (class class class)co 5781    e. cmpo 5783  freccfrec 6294    ^pm cpm 6550   RRcr 7642   0cc0 7643   1c1 7644    + caddc 7646    <_ cle 7824    - cmin 7956   NN0cn0 9000   ZZcz 9077    seqcseq 10248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4050  ax-sep 4053  ax-nul 4061  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-iinf 4509  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-addcom 7743  ax-addass 7745  ax-distr 7747  ax-i2m1 7748  ax-0lt1 7749  ax-0id 7751  ax-rnegex 7752  ax-cnre 7754  ax-pre-ltirr 7755  ax-pre-ltwlin 7756  ax-pre-lttrn 7757  ax-pre-ltadd 7759
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-if 3479  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-tr 4034  df-id 4222  df-iord 4295  df-on 4297  df-ilim 4298  df-suc 4300  df-iom 4512  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-recs 6209  df-frec 6295  df-pm 6552  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-sub 7958  df-neg 7959  df-inn 8744  df-n0 9001  df-z 9078  df-uz 9350  df-seqfrec 10249
This theorem is referenced by:  ennnfonelemex  11961  ennnfonelemrnh  11963
  Copyright terms: Public domain W3C validator