ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvsetsid Unicode version

Theorem fvsetsid 12428
Description: The value of the structure replacement function for its first argument is its second argument. (Contributed by SO, 12-Jul-2018.)
Assertion
Ref Expression
fvsetsid  |-  ( ( F  e.  V  /\  X  e.  W  /\  Y  e.  U )  ->  ( ( F sSet  <. X ,  Y >. ) `  X )  =  Y )

Proof of Theorem fvsetsid
StepHypRef Expression
1 setsvala 12425 . . 3  |-  ( ( F  e.  V  /\  X  e.  W  /\  Y  e.  U )  ->  ( F sSet  <. X ,  Y >. )  =  ( ( F  |`  ( _V  \  { X }
) )  u.  { <. X ,  Y >. } ) )
21fveq1d 5488 . 2  |-  ( ( F  e.  V  /\  X  e.  W  /\  Y  e.  U )  ->  ( ( F sSet  <. X ,  Y >. ) `  X )  =  ( ( ( F  |`  ( _V  \  { X } ) )  u. 
{ <. X ,  Y >. } ) `  X
) )
3 simp2 988 . . 3  |-  ( ( F  e.  V  /\  X  e.  W  /\  Y  e.  U )  ->  X  e.  W )
4 simp3 989 . . 3  |-  ( ( F  e.  V  /\  X  e.  W  /\  Y  e.  U )  ->  Y  e.  U )
5 neldifsn 3706 . . . . 5  |-  -.  X  e.  ( _V  \  { X } )
6 dmres 4905 . . . . . . 7  |-  dom  ( F  |`  ( _V  \  { X } ) )  =  ( ( _V 
\  { X }
)  i^i  dom  F )
7 inss1 3342 . . . . . . 7  |-  ( ( _V  \  { X } )  i^i  dom  F )  C_  ( _V  \  { X } )
86, 7eqsstri 3174 . . . . . 6  |-  dom  ( F  |`  ( _V  \  { X } ) ) 
C_  ( _V  \  { X } )
98sseli 3138 . . . . 5  |-  ( X  e.  dom  ( F  |`  ( _V  \  { X } ) )  ->  X  e.  ( _V  \  { X } ) )
105, 9mto 652 . . . 4  |-  -.  X  e.  dom  ( F  |`  ( _V  \  { X } ) )
1110a1i 9 . . 3  |-  ( ( F  e.  V  /\  X  e.  W  /\  Y  e.  U )  ->  -.  X  e.  dom  ( F  |`  ( _V 
\  { X }
) ) )
12 fsnunfv 5686 . . 3  |-  ( ( X  e.  W  /\  Y  e.  U  /\  -.  X  e.  dom  ( F  |`  ( _V 
\  { X }
) ) )  -> 
( ( ( F  |`  ( _V  \  { X } ) )  u. 
{ <. X ,  Y >. } ) `  X
)  =  Y )
133, 4, 11, 12syl3anc 1228 . 2  |-  ( ( F  e.  V  /\  X  e.  W  /\  Y  e.  U )  ->  ( ( ( F  |`  ( _V  \  { X } ) )  u. 
{ <. X ,  Y >. } ) `  X
)  =  Y )
142, 13eqtrd 2198 1  |-  ( ( F  e.  V  /\  X  e.  W  /\  Y  e.  U )  ->  ( ( F sSet  <. X ,  Y >. ) `  X )  =  Y )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ w3a 968    = wceq 1343    e. wcel 2136   _Vcvv 2726    \ cdif 3113    u. cun 3114    i^i cin 3115   {csn 3576   <.cop 3579   dom cdm 4604    |` cres 4606   ` cfv 5188  (class class class)co 5842   sSet csts 12392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-sets 12401
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator