ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvsetsid Unicode version

Theorem fvsetsid 12981
Description: The value of the structure replacement function for its first argument is its second argument. (Contributed by SO, 12-Jul-2018.)
Assertion
Ref Expression
fvsetsid  |-  ( ( F  e.  V  /\  X  e.  W  /\  Y  e.  U )  ->  ( ( F sSet  <. X ,  Y >. ) `  X )  =  Y )

Proof of Theorem fvsetsid
StepHypRef Expression
1 setsvala 12978 . . 3  |-  ( ( F  e.  V  /\  X  e.  W  /\  Y  e.  U )  ->  ( F sSet  <. X ,  Y >. )  =  ( ( F  |`  ( _V  \  { X }
) )  u.  { <. X ,  Y >. } ) )
21fveq1d 5601 . 2  |-  ( ( F  e.  V  /\  X  e.  W  /\  Y  e.  U )  ->  ( ( F sSet  <. X ,  Y >. ) `  X )  =  ( ( ( F  |`  ( _V  \  { X } ) )  u. 
{ <. X ,  Y >. } ) `  X
) )
3 simp2 1001 . . 3  |-  ( ( F  e.  V  /\  X  e.  W  /\  Y  e.  U )  ->  X  e.  W )
4 simp3 1002 . . 3  |-  ( ( F  e.  V  /\  X  e.  W  /\  Y  e.  U )  ->  Y  e.  U )
5 neldifsn 3774 . . . . 5  |-  -.  X  e.  ( _V  \  { X } )
6 dmres 4999 . . . . . . 7  |-  dom  ( F  |`  ( _V  \  { X } ) )  =  ( ( _V 
\  { X }
)  i^i  dom  F )
7 inss1 3401 . . . . . . 7  |-  ( ( _V  \  { X } )  i^i  dom  F )  C_  ( _V  \  { X } )
86, 7eqsstri 3233 . . . . . 6  |-  dom  ( F  |`  ( _V  \  { X } ) ) 
C_  ( _V  \  { X } )
98sseli 3197 . . . . 5  |-  ( X  e.  dom  ( F  |`  ( _V  \  { X } ) )  ->  X  e.  ( _V  \  { X } ) )
105, 9mto 664 . . . 4  |-  -.  X  e.  dom  ( F  |`  ( _V  \  { X } ) )
1110a1i 9 . . 3  |-  ( ( F  e.  V  /\  X  e.  W  /\  Y  e.  U )  ->  -.  X  e.  dom  ( F  |`  ( _V 
\  { X }
) ) )
12 fsnunfv 5808 . . 3  |-  ( ( X  e.  W  /\  Y  e.  U  /\  -.  X  e.  dom  ( F  |`  ( _V 
\  { X }
) ) )  -> 
( ( ( F  |`  ( _V  \  { X } ) )  u. 
{ <. X ,  Y >. } ) `  X
)  =  Y )
133, 4, 11, 12syl3anc 1250 . 2  |-  ( ( F  e.  V  /\  X  e.  W  /\  Y  e.  U )  ->  ( ( ( F  |`  ( _V  \  { X } ) )  u. 
{ <. X ,  Y >. } ) `  X
)  =  Y )
142, 13eqtrd 2240 1  |-  ( ( F  e.  V  /\  X  e.  W  /\  Y  e.  U )  ->  ( ( F sSet  <. X ,  Y >. ) `  X )  =  Y )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ w3a 981    = wceq 1373    e. wcel 2178   _Vcvv 2776    \ cdif 3171    u. cun 3172    i^i cin 3173   {csn 3643   <.cop 3646   dom cdm 4693    |` cres 4695   ` cfv 5290  (class class class)co 5967   sSet csts 12945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-sets 12954
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator