ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvsetsid Unicode version

Theorem fvsetsid 12652
Description: The value of the structure replacement function for its first argument is its second argument. (Contributed by SO, 12-Jul-2018.)
Assertion
Ref Expression
fvsetsid  |-  ( ( F  e.  V  /\  X  e.  W  /\  Y  e.  U )  ->  ( ( F sSet  <. X ,  Y >. ) `  X )  =  Y )

Proof of Theorem fvsetsid
StepHypRef Expression
1 setsvala 12649 . . 3  |-  ( ( F  e.  V  /\  X  e.  W  /\  Y  e.  U )  ->  ( F sSet  <. X ,  Y >. )  =  ( ( F  |`  ( _V  \  { X }
) )  u.  { <. X ,  Y >. } ) )
21fveq1d 5556 . 2  |-  ( ( F  e.  V  /\  X  e.  W  /\  Y  e.  U )  ->  ( ( F sSet  <. X ,  Y >. ) `  X )  =  ( ( ( F  |`  ( _V  \  { X } ) )  u. 
{ <. X ,  Y >. } ) `  X
) )
3 simp2 1000 . . 3  |-  ( ( F  e.  V  /\  X  e.  W  /\  Y  e.  U )  ->  X  e.  W )
4 simp3 1001 . . 3  |-  ( ( F  e.  V  /\  X  e.  W  /\  Y  e.  U )  ->  Y  e.  U )
5 neldifsn 3748 . . . . 5  |-  -.  X  e.  ( _V  \  { X } )
6 dmres 4963 . . . . . . 7  |-  dom  ( F  |`  ( _V  \  { X } ) )  =  ( ( _V 
\  { X }
)  i^i  dom  F )
7 inss1 3379 . . . . . . 7  |-  ( ( _V  \  { X } )  i^i  dom  F )  C_  ( _V  \  { X } )
86, 7eqsstri 3211 . . . . . 6  |-  dom  ( F  |`  ( _V  \  { X } ) ) 
C_  ( _V  \  { X } )
98sseli 3175 . . . . 5  |-  ( X  e.  dom  ( F  |`  ( _V  \  { X } ) )  ->  X  e.  ( _V  \  { X } ) )
105, 9mto 663 . . . 4  |-  -.  X  e.  dom  ( F  |`  ( _V  \  { X } ) )
1110a1i 9 . . 3  |-  ( ( F  e.  V  /\  X  e.  W  /\  Y  e.  U )  ->  -.  X  e.  dom  ( F  |`  ( _V 
\  { X }
) ) )
12 fsnunfv 5759 . . 3  |-  ( ( X  e.  W  /\  Y  e.  U  /\  -.  X  e.  dom  ( F  |`  ( _V 
\  { X }
) ) )  -> 
( ( ( F  |`  ( _V  \  { X } ) )  u. 
{ <. X ,  Y >. } ) `  X
)  =  Y )
133, 4, 11, 12syl3anc 1249 . 2  |-  ( ( F  e.  V  /\  X  e.  W  /\  Y  e.  U )  ->  ( ( ( F  |`  ( _V  \  { X } ) )  u. 
{ <. X ,  Y >. } ) `  X
)  =  Y )
142, 13eqtrd 2226 1  |-  ( ( F  e.  V  /\  X  e.  W  /\  Y  e.  U )  ->  ( ( F sSet  <. X ,  Y >. ) `  X )  =  Y )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ w3a 980    = wceq 1364    e. wcel 2164   _Vcvv 2760    \ cdif 3150    u. cun 3151    i^i cin 3152   {csn 3618   <.cop 3621   dom cdm 4659    |` cres 4661   ` cfv 5254  (class class class)co 5918   sSet csts 12616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-sets 12625
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator