Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvsetsid | Unicode version |
Description: The value of the structure replacement function for its first argument is its second argument. (Contributed by SO, 12-Jul-2018.) |
Ref | Expression |
---|---|
fvsetsid | sSet |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsvala 12460 | . . 3 sSet | |
2 | 1 | fveq1d 5509 | . 2 sSet |
3 | simp2 998 | . . 3 | |
4 | simp3 999 | . . 3 | |
5 | neldifsn 3719 | . . . . 5 | |
6 | dmres 4921 | . . . . . . 7 | |
7 | inss1 3353 | . . . . . . 7 | |
8 | 6, 7 | eqsstri 3185 | . . . . . 6 |
9 | 8 | sseli 3149 | . . . . 5 |
10 | 5, 9 | mto 662 | . . . 4 |
11 | 10 | a1i 9 | . . 3 |
12 | fsnunfv 5709 | . . 3 | |
13 | 3, 4, 11, 12 | syl3anc 1238 | . 2 |
14 | 2, 13 | eqtrd 2208 | 1 sSet |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 w3a 978 wceq 1353 wcel 2146 cvv 2735 cdif 3124 cun 3125 cin 3126 csn 3589 cop 3592 cdm 4620 cres 4622 cfv 5208 (class class class)co 5865 sSet csts 12427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-res 4632 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-sets 12436 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |