ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiinxy Unicode version

Theorem nfiinxy 3939
Description: Bound-variable hypothesis builder for indexed intersection. (Contributed by Mario Carneiro, 25-Jan-2014.)
Hypotheses
Ref Expression
nfiunxy.1  |-  F/_ y A
nfiunxy.2  |-  F/_ y B
Assertion
Ref Expression
nfiinxy  |-  F/_ y |^|_ x  e.  A  B
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)    B( x, y)

Proof of Theorem nfiinxy
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-iin 3915 . 2  |-  |^|_ x  e.  A  B  =  { z  |  A. x  e.  A  z  e.  B }
2 nfiunxy.1 . . . 4  |-  F/_ y A
3 nfiunxy.2 . . . . 5  |-  F/_ y B
43nfcri 2330 . . . 4  |-  F/ y  z  e.  B
52, 4nfralxy 2532 . . 3  |-  F/ y A. x  e.  A  z  e.  B
65nfab 2341 . 2  |-  F/_ y { z  |  A. x  e.  A  z  e.  B }
71, 6nfcxfr 2333 1  |-  F/_ y |^|_ x  e.  A  B
Colors of variables: wff set class
Syntax hints:    e. wcel 2164   {cab 2179   F/_wnfc 2323   A.wral 2472   |^|_ciin 3913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-iin 3915
This theorem is referenced by:  iinab  3974
  Copyright terms: Public domain W3C validator