ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiinxy Unicode version

Theorem nfiinxy 3763
Description: Bound-variable hypothesis builder for indexed intersection. (Contributed by Mario Carneiro, 25-Jan-2014.)
Hypotheses
Ref Expression
nfiunxy.1  |-  F/_ y A
nfiunxy.2  |-  F/_ y B
Assertion
Ref Expression
nfiinxy  |-  F/_ y |^|_ x  e.  A  B
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)    B( x, y)

Proof of Theorem nfiinxy
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-iin 3739 . 2  |-  |^|_ x  e.  A  B  =  { z  |  A. x  e.  A  z  e.  B }
2 nfiunxy.1 . . . 4  |-  F/_ y A
3 nfiunxy.2 . . . . 5  |-  F/_ y B
43nfcri 2223 . . . 4  |-  F/ y  z  e.  B
52, 4nfralxy 2415 . . 3  |-  F/ y A. x  e.  A  z  e.  B
65nfab 2234 . 2  |-  F/_ y { z  |  A. x  e.  A  z  e.  B }
71, 6nfcxfr 2226 1  |-  F/_ y |^|_ x  e.  A  B
Colors of variables: wff set class
Syntax hints:    e. wcel 1439   {cab 2075   F/_wnfc 2216   A.wral 2360   |^|_ciin 3737
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-iin 3739
This theorem is referenced by:  iinab  3797
  Copyright terms: Public domain W3C validator