ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiinxy GIF version

Theorem nfiinxy 3787
Description: Bound-variable hypothesis builder for indexed intersection. (Contributed by Mario Carneiro, 25-Jan-2014.)
Hypotheses
Ref Expression
nfiunxy.1 𝑦𝐴
nfiunxy.2 𝑦𝐵
Assertion
Ref Expression
nfiinxy 𝑦 𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfiinxy
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-iin 3763 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∀𝑥𝐴 𝑧𝐵}
2 nfiunxy.1 . . . 4 𝑦𝐴
3 nfiunxy.2 . . . . 5 𝑦𝐵
43nfcri 2234 . . . 4 𝑦 𝑧𝐵
52, 4nfralxy 2430 . . 3 𝑦𝑥𝐴 𝑧𝐵
65nfab 2245 . 2 𝑦{𝑧 ∣ ∀𝑥𝐴 𝑧𝐵}
71, 6nfcxfr 2237 1 𝑦 𝑥𝐴 𝐵
Colors of variables: wff set class
Syntax hints:  wcel 1448  {cab 2086  wnfc 2227  wral 2375   ciin 3761
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-iin 3763
This theorem is referenced by:  iinab  3821
  Copyright terms: Public domain W3C validator