ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiinxy GIF version

Theorem nfiinxy 3943
Description: Bound-variable hypothesis builder for indexed intersection. (Contributed by Mario Carneiro, 25-Jan-2014.)
Hypotheses
Ref Expression
nfiunxy.1 𝑦𝐴
nfiunxy.2 𝑦𝐵
Assertion
Ref Expression
nfiinxy 𝑦 𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfiinxy
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-iin 3919 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∀𝑥𝐴 𝑧𝐵}
2 nfiunxy.1 . . . 4 𝑦𝐴
3 nfiunxy.2 . . . . 5 𝑦𝐵
43nfcri 2333 . . . 4 𝑦 𝑧𝐵
52, 4nfralxy 2535 . . 3 𝑦𝑥𝐴 𝑧𝐵
65nfab 2344 . 2 𝑦{𝑧 ∣ ∀𝑥𝐴 𝑧𝐵}
71, 6nfcxfr 2336 1 𝑦 𝑥𝐴 𝐵
Colors of variables: wff set class
Syntax hints:  wcel 2167  {cab 2182  wnfc 2326  wral 2475   ciin 3917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-iin 3919
This theorem is referenced by:  iinab  3978
  Copyright terms: Public domain W3C validator