ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinab Unicode version

Theorem iinab 3943
Description: Indexed intersection of a class builder. (Contributed by NM, 6-Dec-2011.)
Assertion
Ref Expression
iinab  |-  |^|_ x  e.  A  { y  |  ph }  =  {
y  |  A. x  e.  A  ph }
Distinct variable groups:    y, A    x, y
Allowed substitution hints:    ph( x, y)    A( x)

Proof of Theorem iinab
StepHypRef Expression
1 nfcv 2317 . . . 4  |-  F/_ y A
2 nfab1 2319 . . . 4  |-  F/_ y { y  |  ph }
31, 2nfiinxy 3909 . . 3  |-  F/_ y |^|_ x  e.  A  {
y  |  ph }
4 nfab1 2319 . . 3  |-  F/_ y { y  |  A. x  e.  A  ph }
53, 4cleqf 2342 . 2  |-  ( |^|_ x  e.  A  { y  |  ph }  =  { y  |  A. x  e.  A  ph }  <->  A. y ( y  e. 
|^|_ x  e.  A  { y  |  ph } 
<->  y  e.  { y  |  A. x  e.  A  ph } ) )
6 abid 2163 . . . 4  |-  ( y  e.  { y  | 
ph }  <->  ph )
76ralbii 2481 . . 3  |-  ( A. x  e.  A  y  e.  { y  |  ph } 
<-> 
A. x  e.  A  ph )
8 vex 2738 . . . 4  |-  y  e. 
_V
9 eliin 3887 . . . 4  |-  ( y  e.  _V  ->  (
y  e.  |^|_ x  e.  A  { y  |  ph }  <->  A. x  e.  A  y  e.  { y  |  ph }
) )
108, 9ax-mp 5 . . 3  |-  ( y  e.  |^|_ x  e.  A  { y  |  ph } 
<-> 
A. x  e.  A  y  e.  { y  |  ph } )
11 abid 2163 . . 3  |-  ( y  e.  { y  | 
A. x  e.  A  ph }  <->  A. x  e.  A  ph )
127, 10, 113bitr4i 212 . 2  |-  ( y  e.  |^|_ x  e.  A  { y  |  ph } 
<->  y  e.  { y  |  A. x  e.  A  ph } )
135, 12mpgbir 1451 1  |-  |^|_ x  e.  A  { y  |  ph }  =  {
y  |  A. x  e.  A  ph }
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1353    e. wcel 2146   {cab 2161   A.wral 2453   _Vcvv 2735   |^|_ciin 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-v 2737  df-iin 3885
This theorem is referenced by:  iinrabm  3944
  Copyright terms: Public domain W3C validator