ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnfc1 Unicode version

Theorem nfnfc1 2353
Description:  x is bound in  F/_ x A. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfnfc1  |-  F/ x F/_ x A

Proof of Theorem nfnfc1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-nfc 2339 . 2  |-  ( F/_ x A  <->  A. y F/ x  y  e.  A )
2 nfnf1 1568 . . 3  |-  F/ x F/ x  y  e.  A
32nfal 1600 . 2  |-  F/ x A. y F/ x  y  e.  A
41, 3nfxfr 1498 1  |-  F/ x F/_ x A
Colors of variables: wff set class
Syntax hints:   A.wal 1371   F/wnf 1484    e. wcel 2178   F/_wnfc 2337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-nfc 2339
This theorem is referenced by:  vtoclgft  2828  sbcralt  3082  sbcrext  3083  csbiebt  3141  nfopd  3850  nfimad  5050  nffvd  5611
  Copyright terms: Public domain W3C validator