| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > clelsb1f | Unicode version | ||
| Description: Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 2174). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (Revised by Thierry Arnoux, 13-Mar-2017.) | 
| Ref | Expression | 
|---|---|
| clelsb1f.1 | 
 | 
| Ref | Expression | 
|---|---|
| clelsb1f | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | clelsb1f.1 | 
. . . 4
 | |
| 2 | 1 | nfcri 2333 | 
. . 3
 | 
| 3 | 2 | sbco2 1984 | 
. 2
 | 
| 4 | nfv 1542 | 
. . . 4
 | |
| 5 | eleq1w 2257 | 
. . . 4
 | |
| 6 | 4, 5 | sbie 1805 | 
. . 3
 | 
| 7 | 6 | sbbii 1779 | 
. 2
 | 
| 8 | nfv 1542 | 
. . 3
 | |
| 9 | eleq1w 2257 | 
. . 3
 | |
| 10 | 8, 9 | sbie 1805 | 
. 2
 | 
| 11 | 3, 7, 10 | 3bitr3i 210 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 | 
| This theorem is referenced by: rmo3f 2961 | 
| Copyright terms: Public domain | W3C validator |