ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnfc1 GIF version

Theorem nfnfc1 2315
Description: 𝑥 is bound in 𝑥𝐴. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfnfc1 𝑥𝑥𝐴

Proof of Theorem nfnfc1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-nfc 2301 . 2 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
2 nfnf1 1537 . . 3 𝑥𝑥 𝑦𝐴
32nfal 1569 . 2 𝑥𝑦𝑥 𝑦𝐴
41, 3nfxfr 1467 1 𝑥𝑥𝐴
Colors of variables: wff set class
Syntax hints:  wal 1346  wnf 1453  wcel 2141  wnfc 2299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-nfc 2301
This theorem is referenced by:  vtoclgft  2780  sbcralt  3031  sbcrext  3032  csbiebt  3088  nfopd  3782  nfimad  4962  nffvd  5508
  Copyright terms: Public domain W3C validator