Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfnfc1 | GIF version |
Description: 𝑥 is bound in Ⅎ𝑥𝐴. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfnfc1 | ⊢ Ⅎ𝑥Ⅎ𝑥𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nfc 2301 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
2 | nfnf1 1537 | . . 3 ⊢ Ⅎ𝑥Ⅎ𝑥 𝑦 ∈ 𝐴 | |
3 | 2 | nfal 1569 | . 2 ⊢ Ⅎ𝑥∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴 |
4 | 1, 3 | nfxfr 1467 | 1 ⊢ Ⅎ𝑥Ⅎ𝑥𝐴 |
Colors of variables: wff set class |
Syntax hints: ∀wal 1346 Ⅎwnf 1453 ∈ wcel 2141 Ⅎwnfc 2299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-nfc 2301 |
This theorem is referenced by: vtoclgft 2780 sbcralt 3031 sbcrext 3032 csbiebt 3088 nfopd 3782 nfimad 4962 nffvd 5508 |
Copyright terms: Public domain | W3C validator |