ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnfc1 GIF version

Theorem nfnfc1 2350
Description: 𝑥 is bound in 𝑥𝐴. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfnfc1 𝑥𝑥𝐴

Proof of Theorem nfnfc1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-nfc 2336 . 2 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
2 nfnf1 1566 . . 3 𝑥𝑥 𝑦𝐴
32nfal 1598 . 2 𝑥𝑦𝑥 𝑦𝐴
41, 3nfxfr 1496 1 𝑥𝑥𝐴
Colors of variables: wff set class
Syntax hints:  wal 1370  wnf 1482  wcel 2175  wnfc 2334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ial 1556
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-nfc 2336
This theorem is referenced by:  vtoclgft  2822  sbcralt  3074  sbcrext  3075  csbiebt  3132  nfopd  3835  nfimad  5028  nffvd  5582
  Copyright terms: Public domain W3C validator