| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfnfc1 | GIF version | ||
| Description: 𝑥 is bound in Ⅎ𝑥𝐴. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfnfc1 | ⊢ Ⅎ𝑥Ⅎ𝑥𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nfc 2338 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
| 2 | nfnf1 1568 | . . 3 ⊢ Ⅎ𝑥Ⅎ𝑥 𝑦 ∈ 𝐴 | |
| 3 | 2 | nfal 1600 | . 2 ⊢ Ⅎ𝑥∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 4 | 1, 3 | nfxfr 1498 | 1 ⊢ Ⅎ𝑥Ⅎ𝑥𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∀wal 1371 Ⅎwnf 1484 ∈ wcel 2177 Ⅎwnfc 2336 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-nfc 2338 |
| This theorem is referenced by: vtoclgft 2825 sbcralt 3079 sbcrext 3080 csbiebt 3137 nfopd 3845 nfimad 5045 nffvd 5606 |
| Copyright terms: Public domain | W3C validator |