Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrel Unicode version

Theorem nfrel 4636
 Description: Bound-variable hypothesis builder for a relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfrel.1
Assertion
Ref Expression
nfrel

Proof of Theorem nfrel
StepHypRef Expression
1 df-rel 4558 . 2
2 nfrel.1 . . 3
3 nfcv 2283 . . 3
42, 3nfss 3097 . 2
51, 4nfxfr 1451 1
 Colors of variables: wff set class Syntax hints:  wnf 1437  wnfc 2270  cvv 2691   wss 3078   cxp 4549   wrel 4556 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2123 This theorem depends on definitions:  df-bi 116  df-nf 1438  df-sb 1732  df-clab 2128  df-cleq 2134  df-clel 2137  df-nfc 2272  df-ral 2423  df-in 3084  df-ss 3091  df-rel 4558 This theorem is referenced by:  nffun  5158
 Copyright terms: Public domain W3C validator