ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrel Unicode version

Theorem nfrel 4744
Description: Bound-variable hypothesis builder for a relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfrel.1  |-  F/_ x A
Assertion
Ref Expression
nfrel  |-  F/ x Rel  A

Proof of Theorem nfrel
StepHypRef Expression
1 df-rel 4666 . 2  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
2 nfrel.1 . . 3  |-  F/_ x A
3 nfcv 2336 . . 3  |-  F/_ x
( _V  X.  _V )
42, 3nfss 3172 . 2  |-  F/ x  A  C_  ( _V  X.  _V )
51, 4nfxfr 1485 1  |-  F/ x Rel  A
Colors of variables: wff set class
Syntax hints:   F/wnf 1471   F/_wnfc 2323   _Vcvv 2760    C_ wss 3153    X. cxp 4657   Rel wrel 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-in 3159  df-ss 3166  df-rel 4666
This theorem is referenced by:  nffun  5277
  Copyright terms: Public domain W3C validator