ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrel Unicode version

Theorem nfrel 4804
Description: Bound-variable hypothesis builder for a relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfrel.1  |-  F/_ x A
Assertion
Ref Expression
nfrel  |-  F/ x Rel  A

Proof of Theorem nfrel
StepHypRef Expression
1 df-rel 4726 . 2  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
2 nfrel.1 . . 3  |-  F/_ x A
3 nfcv 2372 . . 3  |-  F/_ x
( _V  X.  _V )
42, 3nfss 3217 . 2  |-  F/ x  A  C_  ( _V  X.  _V )
51, 4nfxfr 1520 1  |-  F/ x Rel  A
Colors of variables: wff set class
Syntax hints:   F/wnf 1506   F/_wnfc 2359   _Vcvv 2799    C_ wss 3197    X. cxp 4717   Rel wrel 4724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-in 3203  df-ss 3210  df-rel 4726
This theorem is referenced by:  nffun  5341
  Copyright terms: Public domain W3C validator