ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrel Unicode version

Theorem nfrel 4761
Description: Bound-variable hypothesis builder for a relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfrel.1  |-  F/_ x A
Assertion
Ref Expression
nfrel  |-  F/ x Rel  A

Proof of Theorem nfrel
StepHypRef Expression
1 df-rel 4683 . 2  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
2 nfrel.1 . . 3  |-  F/_ x A
3 nfcv 2348 . . 3  |-  F/_ x
( _V  X.  _V )
42, 3nfss 3186 . 2  |-  F/ x  A  C_  ( _V  X.  _V )
51, 4nfxfr 1497 1  |-  F/ x Rel  A
Colors of variables: wff set class
Syntax hints:   F/wnf 1483   F/_wnfc 2335   _Vcvv 2772    C_ wss 3166    X. cxp 4674   Rel wrel 4681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-in 3172  df-ss 3179  df-rel 4683
This theorem is referenced by:  nffun  5295
  Copyright terms: Public domain W3C validator