ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrel Unicode version

Theorem nfrel 4705
Description: Bound-variable hypothesis builder for a relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfrel.1  |-  F/_ x A
Assertion
Ref Expression
nfrel  |-  F/ x Rel  A

Proof of Theorem nfrel
StepHypRef Expression
1 df-rel 4627 . 2  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
2 nfrel.1 . . 3  |-  F/_ x A
3 nfcv 2317 . . 3  |-  F/_ x
( _V  X.  _V )
42, 3nfss 3146 . 2  |-  F/ x  A  C_  ( _V  X.  _V )
51, 4nfxfr 1472 1  |-  F/ x Rel  A
Colors of variables: wff set class
Syntax hints:   F/wnf 1458   F/_wnfc 2304   _Vcvv 2735    C_ wss 3127    X. cxp 4618   Rel wrel 4625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-in 3133  df-ss 3140  df-rel 4627
This theorem is referenced by:  nffun  5231
  Copyright terms: Public domain W3C validator