ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffun Unicode version

Theorem nffun 5340
Description: Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.)
Hypothesis
Ref Expression
nffun.1  |-  F/_ x F
Assertion
Ref Expression
nffun  |-  F/ x Fun  F

Proof of Theorem nffun
StepHypRef Expression
1 df-fun 5319 . 2  |-  ( Fun 
F  <->  ( Rel  F  /\  ( F  o.  `' F )  C_  _I  ) )
2 nffun.1 . . . 4  |-  F/_ x F
32nfrel 4803 . . 3  |-  F/ x Rel  F
42nfcnv 4900 . . . . 5  |-  F/_ x `' F
52, 4nfco 4886 . . . 4  |-  F/_ x
( F  o.  `' F )
6 nfcv 2372 . . . 4  |-  F/_ x  _I
75, 6nfss 3217 . . 3  |-  F/ x
( F  o.  `' F )  C_  _I
83, 7nfan 1611 . 2  |-  F/ x
( Rel  F  /\  ( F  o.  `' F )  C_  _I  )
91, 8nfxfr 1520 1  |-  F/ x Fun  F
Colors of variables: wff set class
Syntax hints:    /\ wa 104   F/wnf 1506   F/_wnfc 2359    C_ wss 3197    _I cid 4378   `'ccnv 4717    o. ccom 4722   Rel wrel 4723   Fun wfun 5311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-rel 4725  df-cnv 4726  df-co 4727  df-fun 5319
This theorem is referenced by:  nffn  5416  nff1  5528  fliftfun  5919
  Copyright terms: Public domain W3C validator