ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffun Unicode version

Theorem nffun 5211
Description: Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.)
Hypothesis
Ref Expression
nffun.1  |-  F/_ x F
Assertion
Ref Expression
nffun  |-  F/ x Fun  F

Proof of Theorem nffun
StepHypRef Expression
1 df-fun 5190 . 2  |-  ( Fun 
F  <->  ( Rel  F  /\  ( F  o.  `' F )  C_  _I  ) )
2 nffun.1 . . . 4  |-  F/_ x F
32nfrel 4689 . . 3  |-  F/ x Rel  F
42nfcnv 4783 . . . . 5  |-  F/_ x `' F
52, 4nfco 4769 . . . 4  |-  F/_ x
( F  o.  `' F )
6 nfcv 2308 . . . 4  |-  F/_ x  _I
75, 6nfss 3135 . . 3  |-  F/ x
( F  o.  `' F )  C_  _I
83, 7nfan 1553 . 2  |-  F/ x
( Rel  F  /\  ( F  o.  `' F )  C_  _I  )
91, 8nfxfr 1462 1  |-  F/ x Fun  F
Colors of variables: wff set class
Syntax hints:    /\ wa 103   F/wnf 1448   F/_wnfc 2295    C_ wss 3116    _I cid 4266   `'ccnv 4603    o. ccom 4608   Rel wrel 4609   Fun wfun 5182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-rel 4611  df-cnv 4612  df-co 4613  df-fun 5190
This theorem is referenced by:  nffn  5284  nff1  5391  fliftfun  5764
  Copyright terms: Public domain W3C validator