ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffun Unicode version

Theorem nffun 5281
Description: Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.)
Hypothesis
Ref Expression
nffun.1  |-  F/_ x F
Assertion
Ref Expression
nffun  |-  F/ x Fun  F

Proof of Theorem nffun
StepHypRef Expression
1 df-fun 5260 . 2  |-  ( Fun 
F  <->  ( Rel  F  /\  ( F  o.  `' F )  C_  _I  ) )
2 nffun.1 . . . 4  |-  F/_ x F
32nfrel 4748 . . 3  |-  F/ x Rel  F
42nfcnv 4845 . . . . 5  |-  F/_ x `' F
52, 4nfco 4831 . . . 4  |-  F/_ x
( F  o.  `' F )
6 nfcv 2339 . . . 4  |-  F/_ x  _I
75, 6nfss 3176 . . 3  |-  F/ x
( F  o.  `' F )  C_  _I
83, 7nfan 1579 . 2  |-  F/ x
( Rel  F  /\  ( F  o.  `' F )  C_  _I  )
91, 8nfxfr 1488 1  |-  F/ x Fun  F
Colors of variables: wff set class
Syntax hints:    /\ wa 104   F/wnf 1474   F/_wnfc 2326    C_ wss 3157    _I cid 4323   `'ccnv 4662    o. ccom 4667   Rel wrel 4668   Fun wfun 5252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-rel 4670  df-cnv 4671  df-co 4672  df-fun 5260
This theorem is referenced by:  nffn  5354  nff1  5461  fliftfun  5843
  Copyright terms: Public domain W3C validator