ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffun Unicode version

Theorem nffun 5313
Description: Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.)
Hypothesis
Ref Expression
nffun.1  |-  F/_ x F
Assertion
Ref Expression
nffun  |-  F/ x Fun  F

Proof of Theorem nffun
StepHypRef Expression
1 df-fun 5292 . 2  |-  ( Fun 
F  <->  ( Rel  F  /\  ( F  o.  `' F )  C_  _I  ) )
2 nffun.1 . . . 4  |-  F/_ x F
32nfrel 4778 . . 3  |-  F/ x Rel  F
42nfcnv 4875 . . . . 5  |-  F/_ x `' F
52, 4nfco 4861 . . . 4  |-  F/_ x
( F  o.  `' F )
6 nfcv 2350 . . . 4  |-  F/_ x  _I
75, 6nfss 3194 . . 3  |-  F/ x
( F  o.  `' F )  C_  _I
83, 7nfan 1589 . 2  |-  F/ x
( Rel  F  /\  ( F  o.  `' F )  C_  _I  )
91, 8nfxfr 1498 1  |-  F/ x Fun  F
Colors of variables: wff set class
Syntax hints:    /\ wa 104   F/wnf 1484   F/_wnfc 2337    C_ wss 3174    _I cid 4353   `'ccnv 4692    o. ccom 4697   Rel wrel 4698   Fun wfun 5284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-rel 4700  df-cnv 4701  df-co 4702  df-fun 5292
This theorem is referenced by:  nffn  5389  nff1  5501  fliftfun  5888
  Copyright terms: Public domain W3C validator