ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffun Unicode version

Theorem nffun 5294
Description: Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.)
Hypothesis
Ref Expression
nffun.1  |-  F/_ x F
Assertion
Ref Expression
nffun  |-  F/ x Fun  F

Proof of Theorem nffun
StepHypRef Expression
1 df-fun 5273 . 2  |-  ( Fun 
F  <->  ( Rel  F  /\  ( F  o.  `' F )  C_  _I  ) )
2 nffun.1 . . . 4  |-  F/_ x F
32nfrel 4760 . . 3  |-  F/ x Rel  F
42nfcnv 4857 . . . . 5  |-  F/_ x `' F
52, 4nfco 4843 . . . 4  |-  F/_ x
( F  o.  `' F )
6 nfcv 2348 . . . 4  |-  F/_ x  _I
75, 6nfss 3186 . . 3  |-  F/ x
( F  o.  `' F )  C_  _I
83, 7nfan 1588 . 2  |-  F/ x
( Rel  F  /\  ( F  o.  `' F )  C_  _I  )
91, 8nfxfr 1497 1  |-  F/ x Fun  F
Colors of variables: wff set class
Syntax hints:    /\ wa 104   F/wnf 1483   F/_wnfc 2335    C_ wss 3166    _I cid 4335   `'ccnv 4674    o. ccom 4679   Rel wrel 4680   Fun wfun 5265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-rel 4682  df-cnv 4683  df-co 4684  df-fun 5273
This theorem is referenced by:  nffn  5370  nff1  5479  fliftfun  5865
  Copyright terms: Public domain W3C validator