Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcrel | Unicode version |
Description: Distribute proper substitution through a relation predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.) |
Ref | Expression |
---|---|
sbcrel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcssg 3530 | . . 3 | |
2 | csbconstg 3069 | . . . 4 | |
3 | 2 | sseq2d 3183 | . . 3 |
4 | 1, 3 | bitrd 188 | . 2 |
5 | df-rel 4627 | . . 3 | |
6 | 5 | sbcbii 3020 | . 2 |
7 | df-rel 4627 | . 2 | |
8 | 4, 6, 7 | 3bitr4g 223 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 wcel 2146 cvv 2735 wsbc 2960 csb 3055 wss 3127 cxp 4618 wrel 4625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-sbc 2961 df-csb 3056 df-in 3133 df-ss 3140 df-rel 4627 |
This theorem is referenced by: sbcfung 5232 |
Copyright terms: Public domain | W3C validator |