ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcrel Unicode version

Theorem sbcrel 4749
Description: Distribute proper substitution through a relation predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.)
Assertion
Ref Expression
sbcrel  |-  ( A  e.  V  ->  ( [. A  /  x ]. Rel  R  <->  Rel  [_ A  /  x ]_ R ) )

Proof of Theorem sbcrel
StepHypRef Expression
1 sbcssg 3559 . . 3  |-  ( A  e.  V  ->  ( [. A  /  x ]. R  C_  ( _V 
X.  _V )  <->  [_ A  /  x ]_ R  C_  [_ A  /  x ]_ ( _V 
X.  _V ) ) )
2 csbconstg 3098 . . . 4  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( _V 
X.  _V )  =  ( _V  X.  _V )
)
32sseq2d 3213 . . 3  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ R  C_  [_ A  /  x ]_ ( _V 
X.  _V )  <->  [_ A  /  x ]_ R  C_  ( _V  X.  _V ) ) )
41, 3bitrd 188 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. R  C_  ( _V 
X.  _V )  <->  [_ A  /  x ]_ R  C_  ( _V  X.  _V ) ) )
5 df-rel 4670 . . 3  |-  ( Rel 
R  <->  R  C_  ( _V 
X.  _V ) )
65sbcbii 3049 . 2  |-  ( [. A  /  x ]. Rel  R  <->  [. A  /  x ]. R  C_  ( _V 
X.  _V ) )
7 df-rel 4670 . 2  |-  ( Rel  [_ A  /  x ]_ R  <->  [_ A  /  x ]_ R  C_  ( _V 
X.  _V ) )
84, 6, 73bitr4g 223 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. Rel  R  <->  Rel  [_ A  /  x ]_ R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2167   _Vcvv 2763   [.wsbc 2989   [_csb 3084    C_ wss 3157    X. cxp 4661   Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sbc 2990  df-csb 3085  df-in 3163  df-ss 3170  df-rel 4670
This theorem is referenced by:  sbcfung  5282
  Copyright terms: Public domain W3C validator