ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcrel Unicode version

Theorem sbcrel 4706
Description: Distribute proper substitution through a relation predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.)
Assertion
Ref Expression
sbcrel  |-  ( A  e.  V  ->  ( [. A  /  x ]. Rel  R  <->  Rel  [_ A  /  x ]_ R ) )

Proof of Theorem sbcrel
StepHypRef Expression
1 sbcssg 3530 . . 3  |-  ( A  e.  V  ->  ( [. A  /  x ]. R  C_  ( _V 
X.  _V )  <->  [_ A  /  x ]_ R  C_  [_ A  /  x ]_ ( _V 
X.  _V ) ) )
2 csbconstg 3069 . . . 4  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( _V 
X.  _V )  =  ( _V  X.  _V )
)
32sseq2d 3183 . . 3  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ R  C_  [_ A  /  x ]_ ( _V 
X.  _V )  <->  [_ A  /  x ]_ R  C_  ( _V  X.  _V ) ) )
41, 3bitrd 188 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. R  C_  ( _V 
X.  _V )  <->  [_ A  /  x ]_ R  C_  ( _V  X.  _V ) ) )
5 df-rel 4627 . . 3  |-  ( Rel 
R  <->  R  C_  ( _V 
X.  _V ) )
65sbcbii 3020 . 2  |-  ( [. A  /  x ]. Rel  R  <->  [. A  /  x ]. R  C_  ( _V 
X.  _V ) )
7 df-rel 4627 . 2  |-  ( Rel  [_ A  /  x ]_ R  <->  [_ A  /  x ]_ R  C_  ( _V 
X.  _V ) )
84, 6, 73bitr4g 223 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. Rel  R  <->  Rel  [_ A  /  x ]_ R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2146   _Vcvv 2735   [.wsbc 2960   [_csb 3055    C_ wss 3127    X. cxp 4618   Rel wrel 4625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-sbc 2961  df-csb 3056  df-in 3133  df-ss 3140  df-rel 4627
This theorem is referenced by:  sbcfung  5232
  Copyright terms: Public domain W3C validator