ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  releqd Unicode version

Theorem releqd 4747
Description: Equality deduction for the relation predicate. (Contributed by NM, 8-Mar-2014.)
Hypothesis
Ref Expression
releqd.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
releqd  |-  ( ph  ->  ( Rel  A  <->  Rel  B ) )

Proof of Theorem releqd
StepHypRef Expression
1 releqd.1 . 2  |-  ( ph  ->  A  =  B )
2 releq 4745 . 2  |-  ( A  =  B  ->  ( Rel  A  <->  Rel  B ) )
31, 2syl 14 1  |-  ( ph  ->  ( Rel  A  <->  Rel  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170  df-rel 4670
This theorem is referenced by:  dftpos3  6320  tposfo2  6325  tposf12  6327  imasaddfnlemg  12957  releqgg  13350  dvdsrd  13650  isunitd  13662  lmreltop  14429  cnprcl2k  14442
  Copyright terms: Public domain W3C validator