| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > releqd | Unicode version | ||
| Description: Equality deduction for the relation predicate. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| releqd.1 |
|
| Ref | Expression |
|---|---|
| releqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releqd.1 |
. 2
| |
| 2 | releq 4757 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 df-rel 4682 |
| This theorem is referenced by: dftpos3 6348 tposfo2 6353 tposf12 6355 imasaddfnlemg 13146 releqgg 13556 dvdsrd 13856 isunitd 13868 lmreltop 14665 cnprcl2k 14678 |
| Copyright terms: Public domain | W3C validator |