| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > releqd | Unicode version | ||
| Description: Equality deduction for the relation predicate. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| releqd.1 |
|
| Ref | Expression |
|---|---|
| releqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releqd.1 |
. 2
| |
| 2 | releq 4801 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 df-rel 4726 |
| This theorem is referenced by: dftpos3 6408 tposfo2 6413 tposf12 6415 imasaddfnlemg 13347 releqgg 13757 dvdsrd 14058 isunitd 14070 cnprcl2k 14880 |
| Copyright terms: Public domain | W3C validator |