ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  releqd Unicode version

Theorem releqd 4777
Description: Equality deduction for the relation predicate. (Contributed by NM, 8-Mar-2014.)
Hypothesis
Ref Expression
releqd.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
releqd  |-  ( ph  ->  ( Rel  A  <->  Rel  B ) )

Proof of Theorem releqd
StepHypRef Expression
1 releqd.1 . 2  |-  ( ph  ->  A  =  B )
2 releq 4775 . 2  |-  ( A  =  B  ->  ( Rel  A  <->  Rel  B ) )
31, 2syl 14 1  |-  ( ph  ->  ( Rel  A  <->  Rel  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   Rel wrel 4698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-in 3180  df-ss 3187  df-rel 4700
This theorem is referenced by:  dftpos3  6371  tposfo2  6376  tposf12  6378  imasaddfnlemg  13261  releqgg  13671  dvdsrd  13971  isunitd  13983  lmreltop  14780  cnprcl2k  14793
  Copyright terms: Public domain W3C validator