ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  releqd Unicode version

Theorem releqd 4759
Description: Equality deduction for the relation predicate. (Contributed by NM, 8-Mar-2014.)
Hypothesis
Ref Expression
releqd.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
releqd  |-  ( ph  ->  ( Rel  A  <->  Rel  B ) )

Proof of Theorem releqd
StepHypRef Expression
1 releqd.1 . 2  |-  ( ph  ->  A  =  B )
2 releq 4757 . 2  |-  ( A  =  B  ->  ( Rel  A  <->  Rel  B ) )
31, 2syl 14 1  |-  ( ph  ->  ( Rel  A  <->  Rel  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   Rel wrel 4680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179  df-rel 4682
This theorem is referenced by:  dftpos3  6348  tposfo2  6353  tposf12  6355  imasaddfnlemg  13146  releqgg  13556  dvdsrd  13856  isunitd  13868  lmreltop  14665  cnprcl2k  14678
  Copyright terms: Public domain W3C validator