Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfrel | GIF version |
Description: Bound-variable hypothesis builder for a relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfrel.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfrel | ⊢ Ⅎ𝑥Rel 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 4627 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
2 | nfrel.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | nfcv 2317 | . . 3 ⊢ Ⅎ𝑥(V × V) | |
4 | 2, 3 | nfss 3146 | . 2 ⊢ Ⅎ𝑥 𝐴 ⊆ (V × V) |
5 | 1, 4 | nfxfr 1472 | 1 ⊢ Ⅎ𝑥Rel 𝐴 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnf 1458 Ⅎwnfc 2304 Vcvv 2735 ⊆ wss 3127 × cxp 4618 Rel wrel 4625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-in 3133 df-ss 3140 df-rel 4627 |
This theorem is referenced by: nffun 5231 |
Copyright terms: Public domain | W3C validator |