| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfrel | GIF version | ||
| Description: Bound-variable hypothesis builder for a relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfrel.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfrel | ⊢ Ⅎ𝑥Rel 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rel 4670 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
| 2 | nfrel.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfcv 2339 | . . 3 ⊢ Ⅎ𝑥(V × V) | |
| 4 | 2, 3 | nfss 3176 | . 2 ⊢ Ⅎ𝑥 𝐴 ⊆ (V × V) |
| 5 | 1, 4 | nfxfr 1488 | 1 ⊢ Ⅎ𝑥Rel 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1474 Ⅎwnfc 2326 Vcvv 2763 ⊆ wss 3157 × cxp 4661 Rel wrel 4668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-in 3163 df-ss 3170 df-rel 4670 |
| This theorem is referenced by: nffun 5281 |
| Copyright terms: Public domain | W3C validator |