![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfrel | GIF version |
Description: Bound-variable hypothesis builder for a relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfrel.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfrel | ⊢ Ⅎ𝑥Rel 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 4666 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
2 | nfrel.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | nfcv 2336 | . . 3 ⊢ Ⅎ𝑥(V × V) | |
4 | 2, 3 | nfss 3172 | . 2 ⊢ Ⅎ𝑥 𝐴 ⊆ (V × V) |
5 | 1, 4 | nfxfr 1485 | 1 ⊢ Ⅎ𝑥Rel 𝐴 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnf 1471 Ⅎwnfc 2323 Vcvv 2760 ⊆ wss 3153 × cxp 4657 Rel wrel 4664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-in 3159 df-ss 3166 df-rel 4666 |
This theorem is referenced by: nffun 5277 |
Copyright terms: Public domain | W3C validator |