ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrel GIF version

Theorem nfrel 4767
Description: Bound-variable hypothesis builder for a relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfrel.1 𝑥𝐴
Assertion
Ref Expression
nfrel 𝑥Rel 𝐴

Proof of Theorem nfrel
StepHypRef Expression
1 df-rel 4689 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
2 nfrel.1 . . 3 𝑥𝐴
3 nfcv 2349 . . 3 𝑥(V × V)
42, 3nfss 3190 . 2 𝑥 𝐴 ⊆ (V × V)
51, 4nfxfr 1498 1 𝑥Rel 𝐴
Colors of variables: wff set class
Syntax hints:  wnf 1484  wnfc 2336  Vcvv 2773  wss 3170   × cxp 4680  Rel wrel 4687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-in 3176  df-ss 3183  df-rel 4689
This theorem is referenced by:  nffun  5302
  Copyright terms: Public domain W3C validator