| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfrel | GIF version | ||
| Description: Bound-variable hypothesis builder for a relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfrel.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfrel | ⊢ Ⅎ𝑥Rel 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rel 4725 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
| 2 | nfrel.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfcv 2372 | . . 3 ⊢ Ⅎ𝑥(V × V) | |
| 4 | 2, 3 | nfss 3217 | . 2 ⊢ Ⅎ𝑥 𝐴 ⊆ (V × V) |
| 5 | 1, 4 | nfxfr 1520 | 1 ⊢ Ⅎ𝑥Rel 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1506 Ⅎwnfc 2359 Vcvv 2799 ⊆ wss 3197 × cxp 4716 Rel wrel 4723 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-in 3203 df-ss 3210 df-rel 4725 |
| This theorem is referenced by: nffun 5340 |
| Copyright terms: Public domain | W3C validator |