ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrel GIF version

Theorem nfrel 4696
Description: Bound-variable hypothesis builder for a relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfrel.1 𝑥𝐴
Assertion
Ref Expression
nfrel 𝑥Rel 𝐴

Proof of Theorem nfrel
StepHypRef Expression
1 df-rel 4618 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
2 nfrel.1 . . 3 𝑥𝐴
3 nfcv 2312 . . 3 𝑥(V × V)
42, 3nfss 3140 . 2 𝑥 𝐴 ⊆ (V × V)
51, 4nfxfr 1467 1 𝑥Rel 𝐴
Colors of variables: wff set class
Syntax hints:  wnf 1453  wnfc 2299  Vcvv 2730  wss 3121   × cxp 4609  Rel wrel 4616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-in 3127  df-ss 3134  df-rel 4618
This theorem is referenced by:  nffun  5221
  Copyright terms: Public domain W3C validator