![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfrexdxy | Unicode version |
Description: Not-free for restricted
existential quantification where ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfraldxy.2 |
![]() ![]() ![]() ![]() |
nfraldxy.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
nfraldxy.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfrexdxy |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2478 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nfraldxy.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | nfcv 2336 |
. . . . . 6
![]() ![]() ![]() ![]() | |
4 | 3 | a1i 9 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | nfraldxy.3 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 4, 5 | nfeld 2352 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | nfraldxy.4 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 6, 7 | nfand 1579 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 2, 8 | nfexd 1772 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 1, 9 | nfxfrd 1486 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 |
This theorem is referenced by: nfrexdya 2530 nfrexw 2533 nfunid 3842 strcollnft 15476 |
Copyright terms: Public domain | W3C validator |