ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrexdxy Unicode version

Theorem nfrexdxy 2500
Description: Not-free for restricted existential quantification where  x and  y are distinct. See nfrexdya 2502 for a version with  y and  A distinct instead. (Contributed by Jim Kingdon, 30-May-2018.)
Hypotheses
Ref Expression
nfraldxy.2  |-  F/ y
ph
nfraldxy.3  |-  ( ph  -> 
F/_ x A )
nfraldxy.4  |-  ( ph  ->  F/ x ps )
Assertion
Ref Expression
nfrexdxy  |-  ( ph  ->  F/ x E. y  e.  A  ps )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    A( x, y)

Proof of Theorem nfrexdxy
StepHypRef Expression
1 df-rex 2450 . 2  |-  ( E. y  e.  A  ps  <->  E. y ( y  e.  A  /\  ps )
)
2 nfraldxy.2 . . 3  |-  F/ y
ph
3 nfcv 2308 . . . . . 6  |-  F/_ x
y
43a1i 9 . . . . 5  |-  ( ph  -> 
F/_ x y )
5 nfraldxy.3 . . . . 5  |-  ( ph  -> 
F/_ x A )
64, 5nfeld 2324 . . . 4  |-  ( ph  ->  F/ x  y  e.  A )
7 nfraldxy.4 . . . 4  |-  ( ph  ->  F/ x ps )
86, 7nfand 1556 . . 3  |-  ( ph  ->  F/ x ( y  e.  A  /\  ps ) )
92, 8nfexd 1749 . 2  |-  ( ph  ->  F/ x E. y
( y  e.  A  /\  ps ) )
101, 9nfxfrd 1463 1  |-  ( ph  ->  F/ x E. y  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   F/wnf 1448   E.wex 1480    e. wcel 2136   F/_wnfc 2295   E.wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450
This theorem is referenced by:  nfrexdya  2502  nfrexxy  2505  nfunid  3796  strcollnft  13866
  Copyright terms: Public domain W3C validator