Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfunid Unicode version

Theorem nfunid 3738
 Description: Deduction version of nfuni 3737. (Contributed by NM, 18-Feb-2013.)
Hypothesis
Ref Expression
nfunid.3
Assertion
Ref Expression
nfunid

Proof of Theorem nfunid
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfuni2 3733 . 2
2 nfv 1508 . . 3
3 nfv 1508 . . . 4
4 nfunid.3 . . . 4
5 nfvd 1509 . . . 4
63, 4, 5nfrexdxy 2466 . . 3
72, 6nfabd 2298 . 2
81, 7nfcxfrd 2277 1
 Colors of variables: wff set class Syntax hints:   wi 4  cab 2123  wnfc 2266  wrex 2415  cuni 3731 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-rex 2420  df-uni 3732 This theorem is referenced by:  dfnfc2  3749  nfiotadw  5086
 Copyright terms: Public domain W3C validator