ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfunid Unicode version

Theorem nfunid 3857
Description: Deduction version of nfuni 3856. (Contributed by NM, 18-Feb-2013.)
Hypothesis
Ref Expression
nfunid.3  |-  ( ph  -> 
F/_ x A )
Assertion
Ref Expression
nfunid  |-  ( ph  -> 
F/_ x U. A
)

Proof of Theorem nfunid
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfuni2 3852 . 2  |-  U. A  =  { y  |  E. z  e.  A  y  e.  z }
2 nfv 1551 . . 3  |-  F/ y
ph
3 nfv 1551 . . . 4  |-  F/ z
ph
4 nfunid.3 . . . 4  |-  ( ph  -> 
F/_ x A )
5 nfvd 1552 . . . 4  |-  ( ph  ->  F/ x  y  e.  z )
63, 4, 5nfrexdxy 2540 . . 3  |-  ( ph  ->  F/ x E. z  e.  A  y  e.  z )
72, 6nfabd 2368 . 2  |-  ( ph  -> 
F/_ x { y  |  E. z  e.  A  y  e.  z } )
81, 7nfcxfrd 2346 1  |-  ( ph  -> 
F/_ x U. A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4   {cab 2191   F/_wnfc 2335   E.wrex 2485   U.cuni 3850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-uni 3851
This theorem is referenced by:  dfnfc2  3868  nfiotadw  5235
  Copyright terms: Public domain W3C validator