ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfunid Unicode version

Theorem nfunid 3803
Description: Deduction version of nfuni 3802. (Contributed by NM, 18-Feb-2013.)
Hypothesis
Ref Expression
nfunid.3  |-  ( ph  -> 
F/_ x A )
Assertion
Ref Expression
nfunid  |-  ( ph  -> 
F/_ x U. A
)

Proof of Theorem nfunid
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfuni2 3798 . 2  |-  U. A  =  { y  |  E. z  e.  A  y  e.  z }
2 nfv 1521 . . 3  |-  F/ y
ph
3 nfv 1521 . . . 4  |-  F/ z
ph
4 nfunid.3 . . . 4  |-  ( ph  -> 
F/_ x A )
5 nfvd 1522 . . . 4  |-  ( ph  ->  F/ x  y  e.  z )
63, 4, 5nfrexdxy 2504 . . 3  |-  ( ph  ->  F/ x E. z  e.  A  y  e.  z )
72, 6nfabd 2332 . 2  |-  ( ph  -> 
F/_ x { y  |  E. z  e.  A  y  e.  z } )
81, 7nfcxfrd 2310 1  |-  ( ph  -> 
F/_ x U. A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4   {cab 2156   F/_wnfc 2299   E.wrex 2449   U.cuni 3796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-uni 3797
This theorem is referenced by:  dfnfc2  3814  nfiotadw  5163
  Copyright terms: Public domain W3C validator