ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfunid Unicode version

Theorem nfunid 3818
Description: Deduction version of nfuni 3817. (Contributed by NM, 18-Feb-2013.)
Hypothesis
Ref Expression
nfunid.3  |-  ( ph  -> 
F/_ x A )
Assertion
Ref Expression
nfunid  |-  ( ph  -> 
F/_ x U. A
)

Proof of Theorem nfunid
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfuni2 3813 . 2  |-  U. A  =  { y  |  E. z  e.  A  y  e.  z }
2 nfv 1528 . . 3  |-  F/ y
ph
3 nfv 1528 . . . 4  |-  F/ z
ph
4 nfunid.3 . . . 4  |-  ( ph  -> 
F/_ x A )
5 nfvd 1529 . . . 4  |-  ( ph  ->  F/ x  y  e.  z )
63, 4, 5nfrexdxy 2511 . . 3  |-  ( ph  ->  F/ x E. z  e.  A  y  e.  z )
72, 6nfabd 2339 . 2  |-  ( ph  -> 
F/_ x { y  |  E. z  e.  A  y  e.  z } )
81, 7nfcxfrd 2317 1  |-  ( ph  -> 
F/_ x U. A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4   {cab 2163   F/_wnfc 2306   E.wrex 2456   U.cuni 3811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-uni 3812
This theorem is referenced by:  dfnfc2  3829  nfiotadw  5183
  Copyright terms: Public domain W3C validator