Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfrexxy | Unicode version |
Description: Not-free for restricted existential quantification where and are distinct. See nfrexya 2507 for a version with and distinct instead. (Contributed by Jim Kingdon, 30-May-2018.) |
Ref | Expression |
---|---|
nfralxy.1 | |
nfralxy.2 |
Ref | Expression |
---|---|
nfrexxy |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1454 | . . 3 | |
2 | nfralxy.1 | . . . 4 | |
3 | 2 | a1i 9 | . . 3 |
4 | nfralxy.2 | . . . 4 | |
5 | 4 | a1i 9 | . . 3 |
6 | 1, 3, 5 | nfrexdxy 2500 | . 2 |
7 | 6 | mptru 1352 | 1 |
Colors of variables: wff set class |
Syntax hints: wtru 1344 wnf 1448 wnfc 2295 wrex 2445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 |
This theorem is referenced by: r19.12 2572 sbcrext 3028 nfuni 3795 nfiunxy 3892 rexxpf 4751 abrexex2g 6088 abrexex2 6092 nfrecs 6275 fimaxre2 11168 nfsum 11298 nfcprod1 11495 nfcprod 11496 bezoutlemmain 11931 ctiunctlemfo 12372 bj-findis 13861 strcollnfALT 13868 |
Copyright terms: Public domain | W3C validator |