![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfrexdxy | GIF version |
Description: Not-free for restricted existential quantification where 𝑥 and 𝑦 are distinct. See nfrexdya 2513 for a version with 𝑦 and 𝐴 distinct instead. (Contributed by Jim Kingdon, 30-May-2018.) |
Ref | Expression |
---|---|
nfraldxy.2 | ⊢ Ⅎ𝑦𝜑 |
nfraldxy.3 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfraldxy.4 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfrexdxy | ⊢ (𝜑 → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2461 | . 2 ⊢ (∃𝑦 ∈ 𝐴 𝜓 ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) | |
2 | nfraldxy.2 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | nfcv 2319 | . . . . . 6 ⊢ Ⅎ𝑥𝑦 | |
4 | 3 | a1i 9 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝑦) |
5 | nfraldxy.3 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
6 | 4, 5 | nfeld 2335 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
7 | nfraldxy.4 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
8 | 6, 7 | nfand 1568 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜓)) |
9 | 2, 8 | nfexd 1761 | . 2 ⊢ (𝜑 → Ⅎ𝑥∃𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) |
10 | 1, 9 | nfxfrd 1475 | 1 ⊢ (𝜑 → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 Ⅎwnf 1460 ∃wex 1492 ∈ wcel 2148 Ⅎwnfc 2306 ∃wrex 2456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 |
This theorem is referenced by: nfrexdya 2513 nfrexxy 2516 nfunid 3818 strcollnft 14876 |
Copyright terms: Public domain | W3C validator |