ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcsbw Unicode version

Theorem nfcsbw 3081
Description: Bound-variable hypothesis builder for substitution into a class. Version of nfcsb 3082 with a disjoint variable condition. (Contributed by Mario Carneiro, 12-Oct-2016.) (Revised by Gino Giotto, 10-Jan-2024.)
Hypotheses
Ref Expression
nfcsbw.1  |-  F/_ x A
nfcsbw.2  |-  F/_ x B
Assertion
Ref Expression
nfcsbw  |-  F/_ x [_ A  /  y ]_ B
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)    B( x, y)

Proof of Theorem nfcsbw
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-csb 3046 . . 3  |-  [_ A  /  y ]_ B  =  { z  |  [. A  /  y ]. z  e.  B }
2 nftru 1454 . . . 4  |-  F/ z T.
3 nftru 1454 . . . . 5  |-  F/ y T.
4 nfcsbw.1 . . . . . 6  |-  F/_ x A
54a1i 9 . . . . 5  |-  ( T. 
->  F/_ x A )
6 nfcsbw.2 . . . . . . 7  |-  F/_ x B
76a1i 9 . . . . . 6  |-  ( T. 
->  F/_ x B )
87nfcrd 2322 . . . . 5  |-  ( T. 
->  F/ x  z  e.  B )
93, 5, 8nfsbcdw 3079 . . . 4  |-  ( T. 
->  F/ x [. A  /  y ]. z  e.  B )
102, 9nfabdw 2327 . . 3  |-  ( T. 
->  F/_ x { z  |  [. A  / 
y ]. z  e.  B } )
111, 10nfcxfrd 2306 . 2  |-  ( T. 
->  F/_ x [_ A  /  y ]_ B
)
1211mptru 1352 1  |-  F/_ x [_ A  /  y ]_ B
Colors of variables: wff set class
Syntax hints:   T. wtru 1344    e. wcel 2136   {cab 2151   F/_wnfc 2295   [.wsbc 2951   [_csb 3045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-sbc 2952  df-csb 3046
This theorem is referenced by:  fprod2dlemstep  11563  fprodcom2fi  11567
  Copyright terms: Public domain W3C validator