ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcsbw Unicode version

Theorem nfcsbw 3108
Description: Bound-variable hypothesis builder for substitution into a class. Version of nfcsb 3109 with a disjoint variable condition. (Contributed by Mario Carneiro, 12-Oct-2016.) (Revised by GG, 10-Jan-2024.)
Hypotheses
Ref Expression
nfcsbw.1  |-  F/_ x A
nfcsbw.2  |-  F/_ x B
Assertion
Ref Expression
nfcsbw  |-  F/_ x [_ A  /  y ]_ B
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)    B( x, y)

Proof of Theorem nfcsbw
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-csb 3073 . . 3  |-  [_ A  /  y ]_ B  =  { z  |  [. A  /  y ]. z  e.  B }
2 nftru 1477 . . . 4  |-  F/ z T.
3 nftru 1477 . . . . 5  |-  F/ y T.
4 nfcsbw.1 . . . . . 6  |-  F/_ x A
54a1i 9 . . . . 5  |-  ( T. 
->  F/_ x A )
6 nfcsbw.2 . . . . . . 7  |-  F/_ x B
76a1i 9 . . . . . 6  |-  ( T. 
->  F/_ x B )
87nfcrd 2346 . . . . 5  |-  ( T. 
->  F/ x  z  e.  B )
93, 5, 8nfsbcdw 3106 . . . 4  |-  ( T. 
->  F/ x [. A  /  y ]. z  e.  B )
102, 9nfabdw 2351 . . 3  |-  ( T. 
->  F/_ x { z  |  [. A  / 
y ]. z  e.  B } )
111, 10nfcxfrd 2330 . 2  |-  ( T. 
->  F/_ x [_ A  /  y ]_ B
)
1211mptru 1373 1  |-  F/_ x [_ A  /  y ]_ B
Colors of variables: wff set class
Syntax hints:   T. wtru 1365    e. wcel 2160   {cab 2175   F/_wnfc 2319   [.wsbc 2977   [_csb 3072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-sbc 2978  df-csb 3073
This theorem is referenced by:  fprod2dlemstep  11665  fprodcom2fi  11669
  Copyright terms: Public domain W3C validator