![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfcsbw | Unicode version |
Description: Bound-variable hypothesis builder for substitution into a class. Version of nfcsb 3109 with a disjoint variable condition. (Contributed by Mario Carneiro, 12-Oct-2016.) (Revised by GG, 10-Jan-2024.) |
Ref | Expression |
---|---|
nfcsbw.1 |
![]() ![]() ![]() ![]() |
nfcsbw.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfcsbw |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3073 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nftru 1477 |
. . . 4
![]() ![]() ![]() ![]() | |
3 | nftru 1477 |
. . . . 5
![]() ![]() ![]() ![]() | |
4 | nfcsbw.1 |
. . . . . 6
![]() ![]() ![]() ![]() | |
5 | 4 | a1i 9 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | nfcsbw.2 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
7 | 6 | a1i 9 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 7 | nfcrd 2346 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 3, 5, 8 | nfsbcdw 3106 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 2, 9 | nfabdw 2351 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 1, 10 | nfcxfrd 2330 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 11 | mptru 1373 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-sbc 2978 df-csb 3073 |
This theorem is referenced by: fprod2dlemstep 11665 fprodcom2fi 11669 |
Copyright terms: Public domain | W3C validator |