| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfsbcdw | GIF version | ||
| Description: Version of nfsbcd 3009 with a disjoint variable condition. (Contributed by NM, 23-Nov-2005.) (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfsbcdw.1 | ⊢ Ⅎ𝑦𝜑 |
| nfsbcdw.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfsbcdw.3 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfsbcdw | ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sbc 2990 | . 2 ⊢ ([𝐴 / 𝑦]𝜓 ↔ 𝐴 ∈ {𝑦 ∣ 𝜓}) | |
| 2 | nfsbcdw.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 3 | nfsbcdw.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 4 | nfsbcdw.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 5 | 3, 4 | nfabdw 2358 | . . 3 ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ 𝜓}) |
| 6 | 2, 5 | nfeld 2355 | . 2 ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∈ {𝑦 ∣ 𝜓}) |
| 7 | 1, 6 | nfxfrd 1489 | 1 ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Ⅎwnf 1474 ∈ wcel 2167 {cab 2182 Ⅎwnfc 2326 [wsbc 2989 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-sbc 2990 |
| This theorem is referenced by: nfsbcw 3119 nfcsbw 3121 |
| Copyright terms: Public domain | W3C validator |