ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsbcdw GIF version

Theorem nfsbcdw 3114
Description: Version of nfsbcd 3005 with a disjoint variable condition. (Contributed by NM, 23-Nov-2005.) (Revised by GG, 10-Jan-2024.)
Hypotheses
Ref Expression
nfsbcdw.1 𝑦𝜑
nfsbcdw.2 (𝜑𝑥𝐴)
nfsbcdw.3 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfsbcdw (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfsbcdw
StepHypRef Expression
1 df-sbc 2986 . 2 ([𝐴 / 𝑦]𝜓𝐴 ∈ {𝑦𝜓})
2 nfsbcdw.2 . . 3 (𝜑𝑥𝐴)
3 nfsbcdw.1 . . . 4 𝑦𝜑
4 nfsbcdw.3 . . . 4 (𝜑 → Ⅎ𝑥𝜓)
53, 4nfabdw 2355 . . 3 (𝜑𝑥{𝑦𝜓})
62, 5nfeld 2352 . 2 (𝜑 → Ⅎ𝑥 𝐴 ∈ {𝑦𝜓})
71, 6nfxfrd 1486 1 (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wnf 1471  wcel 2164  {cab 2179  wnfc 2323  [wsbc 2985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-sbc 2986
This theorem is referenced by:  nfsbcw  3115  nfcsbw  3117
  Copyright terms: Public domain W3C validator