| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfsbcdw | GIF version | ||
| Description: Version of nfsbcd 3022 with a disjoint variable condition. (Contributed by NM, 23-Nov-2005.) (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfsbcdw.1 | ⊢ Ⅎ𝑦𝜑 |
| nfsbcdw.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfsbcdw.3 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfsbcdw | ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sbc 3003 | . 2 ⊢ ([𝐴 / 𝑦]𝜓 ↔ 𝐴 ∈ {𝑦 ∣ 𝜓}) | |
| 2 | nfsbcdw.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 3 | nfsbcdw.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 4 | nfsbcdw.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 5 | 3, 4 | nfabdw 2368 | . . 3 ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ 𝜓}) |
| 6 | 2, 5 | nfeld 2365 | . 2 ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∈ {𝑦 ∣ 𝜓}) |
| 7 | 1, 6 | nfxfrd 1499 | 1 ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Ⅎwnf 1484 ∈ wcel 2177 {cab 2192 Ⅎwnfc 2336 [wsbc 3002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-sbc 3003 |
| This theorem is referenced by: nfsbcw 3132 nfcsbw 3134 |
| Copyright terms: Public domain | W3C validator |