![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfcsb1v | Unicode version |
Description: Bound-variable hypothesis builder for substitution into a class. (Contributed by NM, 17-Aug-2006.) (Revised by Mario Carneiro, 12-Oct-2016.) |
Ref | Expression |
---|---|
nfcsb1v |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2228 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | nfcsb1 2962 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-sbc 2841 df-csb 2934 |
This theorem is referenced by: csbhypf 2966 csbiebt 2967 sbcnestgf 2979 csbnest1g 2983 cbvralcsf 2990 cbvrexcsf 2991 cbvreucsf 2992 cbvrabcsf 2993 csbing 3207 disjnims 3837 disjiun 3840 sbcbrg 3894 moop2 4078 pofun 4139 eusvnf 4275 opeliunxp 4493 elrnmpt1 4686 resmptf 4762 csbima12g 4793 fvmpts 5382 fvmpt2 5386 mptfvex 5388 fmptco 5464 fmptcof 5465 fmptcos 5466 elabrex 5537 fliftfuns 5577 csbov123g 5687 ovmpt2s 5768 mpt2mptsx 5967 dmmpt2ssx 5969 fmpt2x 5970 mpt2fvex 5973 fmpt2co 5981 dfmpt2 5988 f1od2 6000 disjxp1 6001 eqerlem 6321 qliftfuns 6374 xpf1o 6558 iunfidisj 6653 seq3f1olemstep 9926 seq3f1olemp 9927 nfsum1 10741 sumeq2 10744 sumfct 10759 isumrblem 10761 isummolem3 10766 isummolem2a 10767 zisum 10770 fsumgcl 10773 fisum 10774 isumss 10779 isumss2 10781 fisumcvg2 10782 fsum3cvg2 10783 fsumzcl2 10795 fsumsplitf 10798 sumsnf 10799 sumsns 10805 fsumsplitsnun 10809 isummulc2 10816 fsum2dlemstep 10824 fisumcom2 10828 fsumshftm 10835 fisum0diag2 10837 fsummulc2 10838 fsum00 10852 fsumabs 10855 fsumrelem 10861 fsumiun 10867 isumshft 10880 mertenslem2 10926 |
Copyright terms: Public domain | W3C validator |