ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsuc Unicode version

Theorem nfsuc 4288
Description: Bound-variable hypothesis builder for successor. (Contributed by NM, 15-Sep-2003.)
Hypothesis
Ref Expression
nfsuc.1  |-  F/_ x A
Assertion
Ref Expression
nfsuc  |-  F/_ x  suc  A

Proof of Theorem nfsuc
StepHypRef Expression
1 df-suc 4251 . 2  |-  suc  A  =  ( A  u.  { A } )
2 nfsuc.1 . . 3  |-  F/_ x A
32nfsn 3547 . . 3  |-  F/_ x { A }
42, 3nfun 3196 . 2  |-  F/_ x
( A  u.  { A } )
51, 4nfcxfr 2250 1  |-  F/_ x  suc  A
Colors of variables: wff set class
Syntax hints:   F/_wnfc 2240    u. cun 3033   {csn 3491   suc csuc 4245
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095
This theorem depends on definitions:  df-bi 116  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-v 2657  df-un 3039  df-sn 3497  df-pr 3498  df-suc 4251
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator