ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elelsuc Unicode version

Theorem elelsuc 4474
Description: Membership in a successor. (Contributed by NM, 20-Jun-1998.)
Assertion
Ref Expression
elelsuc  |-  ( A  e.  B  ->  A  e.  suc  B )

Proof of Theorem elelsuc
StepHypRef Expression
1 orc 714 . 2  |-  ( A  e.  B  ->  ( A  e.  B  \/  A  =  B )
)
2 elsucg 4469 . 2  |-  ( A  e.  B  ->  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  =  B ) ) )
31, 2mpbird 167 1  |-  ( A  e.  B  ->  A  e.  suc  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 710    = wceq 1373    e. wcel 2178   suc csuc 4430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-sn 3649  df-suc 4436
This theorem is referenced by:  suctr  4486  ordsuc  4629  nnaordex  6637  fiintim  7054  exmidfodomrlemr  7341  exmidfodomrlemrALT  7342  3nelsucpw1  7380  ennnfonelemex  12900
  Copyright terms: Public domain W3C validator