ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsuc GIF version

Theorem nfsuc 4386
Description: Bound-variable hypothesis builder for successor. (Contributed by NM, 15-Sep-2003.)
Hypothesis
Ref Expression
nfsuc.1 𝑥𝐴
Assertion
Ref Expression
nfsuc 𝑥 suc 𝐴

Proof of Theorem nfsuc
StepHypRef Expression
1 df-suc 4349 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
2 nfsuc.1 . . 3 𝑥𝐴
32nfsn 3636 . . 3 𝑥{𝐴}
42, 3nfun 3278 . 2 𝑥(𝐴 ∪ {𝐴})
51, 4nfcxfr 2305 1 𝑥 suc 𝐴
Colors of variables: wff set class
Syntax hints:  wnfc 2295  cun 3114  {csn 3576  suc csuc 4343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-suc 4349
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator