| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfsuc | GIF version | ||
| Description: Bound-variable hypothesis builder for successor. (Contributed by NM, 15-Sep-2003.) |
| Ref | Expression |
|---|---|
| nfsuc.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfsuc | ⊢ Ⅎ𝑥 suc 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-suc 4461 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 2 | nfsuc.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfsn 3726 | . . 3 ⊢ Ⅎ𝑥{𝐴} |
| 4 | 2, 3 | nfun 3360 | . 2 ⊢ Ⅎ𝑥(𝐴 ∪ {𝐴}) |
| 5 | 1, 4 | nfcxfr 2369 | 1 ⊢ Ⅎ𝑥 suc 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnfc 2359 ∪ cun 3195 {csn 3666 suc csuc 4455 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-suc 4461 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |