![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfsuc | GIF version |
Description: Bound-variable hypothesis builder for successor. (Contributed by NM, 15-Sep-2003.) |
Ref | Expression |
---|---|
nfsuc.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfsuc | ⊢ Ⅎ𝑥 suc 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 4373 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
2 | nfsuc.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfsn 3654 | . . 3 ⊢ Ⅎ𝑥{𝐴} |
4 | 2, 3 | nfun 3293 | . 2 ⊢ Ⅎ𝑥(𝐴 ∪ {𝐴}) |
5 | 1, 4 | nfcxfr 2316 | 1 ⊢ Ⅎ𝑥 suc 𝐴 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnfc 2306 ∪ cun 3129 {csn 3594 suc csuc 4367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-sn 3600 df-pr 3601 df-suc 4373 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |