ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsuc GIF version

Theorem nfsuc 4468
Description: Bound-variable hypothesis builder for successor. (Contributed by NM, 15-Sep-2003.)
Hypothesis
Ref Expression
nfsuc.1 𝑥𝐴
Assertion
Ref Expression
nfsuc 𝑥 suc 𝐴

Proof of Theorem nfsuc
StepHypRef Expression
1 df-suc 4431 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
2 nfsuc.1 . . 3 𝑥𝐴
32nfsn 3698 . . 3 𝑥{𝐴}
42, 3nfun 3333 . 2 𝑥(𝐴 ∪ {𝐴})
51, 4nfcxfr 2346 1 𝑥 suc 𝐴
Colors of variables: wff set class
Syntax hints:  wnfc 2336  cun 3168  {csn 3638  suc csuc 4425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-sn 3644  df-pr 3645  df-suc 4431
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator