ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsn Unicode version

Theorem nfsn 3636
Description: Bound-variable hypothesis builder for singletons. (Contributed by NM, 14-Nov-1995.)
Hypothesis
Ref Expression
nfsn.1  |-  F/_ x A
Assertion
Ref Expression
nfsn  |-  F/_ x { A }

Proof of Theorem nfsn
StepHypRef Expression
1 dfsn2 3590 . 2  |-  { A }  =  { A ,  A }
2 nfsn.1 . . 3  |-  F/_ x A
32, 2nfpr 3626 . 2  |-  F/_ x { A ,  A }
41, 3nfcxfr 2305 1  |-  F/_ x { A }
Colors of variables: wff set class
Syntax hints:   F/_wnfc 2295   {csn 3576   {cpr 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583
This theorem is referenced by:  nfop  3774  nfsuc  4386  sniota  5180  dfmpo  6191
  Copyright terms: Public domain W3C validator