Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvdsle | Unicode version |
Description: The divisors of a positive integer are bounded by it. The proof does not use . (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
dvdsle |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . 3 | |
2 | 1 | a1d 22 | . 2 |
3 | simplll 528 | . . . . . . 7 | |
4 | simpllr 529 | . . . . . . 7 | |
5 | simpr 109 | . . . . . . 7 | |
6 | simplr 525 | . . . . . . 7 | |
7 | 3, 4, 5, 6 | dvdslelemd 11790 | . . . . . 6 |
8 | 7 | neneqd 2361 | . . . . 5 |
9 | 8 | nrexdv 2563 | . . . 4 |
10 | simpll 524 | . . . . 5 | |
11 | simplr 525 | . . . . . 6 | |
12 | 11 | nnzd 9320 | . . . . 5 |
13 | divides 11738 | . . . . 5 | |
14 | 10, 12, 13 | syl2anc 409 | . . . 4 |
15 | 9, 14 | mtbird 668 | . . 3 |
16 | 15 | pm2.21d 614 | . 2 |
17 | nnz 9218 | . . 3 | |
18 | zlelttric 9244 | . . 3 | |
19 | 17, 18 | sylan2 284 | . 2 |
20 | 2, 16, 19 | mpjaodan 793 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 703 wceq 1348 wcel 2141 wrex 2449 class class class wbr 3987 (class class class)co 5850 cmul 7766 clt 7941 cle 7942 cn 8865 cz 9199 cdvds 11736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-mulrcl 7860 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-1rid 7868 ax-0id 7869 ax-rnegex 7870 ax-precex 7871 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-apti 7876 ax-pre-ltadd 7877 ax-pre-mulgt0 7878 ax-pre-mulext 7879 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-po 4279 df-iso 4280 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-reap 8481 df-ap 8488 df-div 8577 df-inn 8866 df-n0 9123 df-z 9200 df-q 9566 df-dvds 11737 |
This theorem is referenced by: dvdsleabs 11792 dvdsssfz1 11799 fzm1ndvds 11803 fzo0dvdseq 11804 n2dvds1 11858 gcd1 11929 bezoutlemle 11950 dfgcd2 11956 gcdzeq 11964 bezoutr1 11975 lcmgcdlem 12018 ncoprmgcdne1b 12030 qredeq 12037 isprm3 12059 prmdvdsfz 12080 isprm5lem 12082 isprm6 12088 prmfac1 12093 pcpre1 12233 pcidlem 12263 pcprod 12285 pcfac 12289 pockthg 12296 1arith 12306 lgsdir 13651 lgsdilem2 13652 lgsne0 13654 2sqlem8 13674 |
Copyright terms: Public domain | W3C validator |