| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdsle | Unicode version | ||
| Description: The divisors of a
positive integer are bounded by it. The proof does
not use |
| Ref | Expression |
|---|---|
| dvdsle |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . 3
| |
| 2 | 1 | a1d 22 |
. 2
|
| 3 | simplll 533 |
. . . . . . 7
| |
| 4 | simpllr 534 |
. . . . . . 7
| |
| 5 | simpr 110 |
. . . . . . 7
| |
| 6 | simplr 528 |
. . . . . . 7
| |
| 7 | 3, 4, 5, 6 | dvdslelemd 12073 |
. . . . . 6
|
| 8 | 7 | neneqd 2396 |
. . . . 5
|
| 9 | 8 | nrexdv 2598 |
. . . 4
|
| 10 | simpll 527 |
. . . . 5
| |
| 11 | simplr 528 |
. . . . . 6
| |
| 12 | 11 | nnzd 9476 |
. . . . 5
|
| 13 | divides 12019 |
. . . . 5
| |
| 14 | 10, 12, 13 | syl2anc 411 |
. . . 4
|
| 15 | 9, 14 | mtbird 674 |
. . 3
|
| 16 | 15 | pm2.21d 620 |
. 2
|
| 17 | nnz 9373 |
. . 3
| |
| 18 | zlelttric 9399 |
. . 3
| |
| 19 | 17, 18 | sylan2 286 |
. 2
|
| 20 | 2, 16, 19 | mpjaodan 799 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-precex 8017 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-apti 8022 ax-pre-ltadd 8023 ax-pre-mulgt0 8024 ax-pre-mulext 8025 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-po 4341 df-iso 4342 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-reap 8630 df-ap 8637 df-div 8728 df-inn 9019 df-n0 9278 df-z 9355 df-q 9723 df-dvds 12018 |
| This theorem is referenced by: dvdsleabs 12075 dvdsssfz1 12082 fzm1ndvds 12086 fzo0dvdseq 12087 n2dvds1 12142 gcd1 12227 bezoutlemle 12248 dfgcd2 12254 gcdzeq 12262 bezoutr1 12273 lcmgcdlem 12318 ncoprmgcdne1b 12330 qredeq 12337 isprm3 12359 prmdvdsfz 12380 isprm5lem 12382 isprm6 12388 prmfac1 12393 pcpre1 12534 pcidlem 12565 pcprod 12588 pcfac 12592 pockthg 12599 1arith 12609 4sqlem11 12643 znidomb 14338 lgsdir 15430 lgsdilem2 15431 lgsne0 15433 lgsquadlem2 15473 2sqlem8 15518 |
| Copyright terms: Public domain | W3C validator |