| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdsle | Unicode version | ||
| Description: The divisors of a
positive integer are bounded by it. The proof does
not use |
| Ref | Expression |
|---|---|
| dvdsle |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . 3
| |
| 2 | 1 | a1d 22 |
. 2
|
| 3 | simplll 533 |
. . . . . . 7
| |
| 4 | simpllr 534 |
. . . . . . 7
| |
| 5 | simpr 110 |
. . . . . . 7
| |
| 6 | simplr 528 |
. . . . . . 7
| |
| 7 | 3, 4, 5, 6 | dvdslelemd 12349 |
. . . . . 6
|
| 8 | 7 | neneqd 2421 |
. . . . 5
|
| 9 | 8 | nrexdv 2623 |
. . . 4
|
| 10 | simpll 527 |
. . . . 5
| |
| 11 | simplr 528 |
. . . . . 6
| |
| 12 | 11 | nnzd 9564 |
. . . . 5
|
| 13 | divides 12295 |
. . . . 5
| |
| 14 | 10, 12, 13 | syl2anc 411 |
. . . 4
|
| 15 | 9, 14 | mtbird 677 |
. . 3
|
| 16 | 15 | pm2.21d 622 |
. 2
|
| 17 | nnz 9461 |
. . 3
| |
| 18 | zlelttric 9487 |
. . 3
| |
| 19 | 17, 18 | sylan2 286 |
. 2
|
| 20 | 2, 16, 19 | mpjaodan 803 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-po 4386 df-iso 4387 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-n0 9366 df-z 9443 df-q 9811 df-dvds 12294 |
| This theorem is referenced by: dvdsleabs 12351 dvdsssfz1 12358 fzm1ndvds 12362 fzo0dvdseq 12363 n2dvds1 12418 gcd1 12503 bezoutlemle 12524 dfgcd2 12530 gcdzeq 12538 bezoutr1 12549 lcmgcdlem 12594 ncoprmgcdne1b 12606 qredeq 12613 isprm3 12635 prmdvdsfz 12656 isprm5lem 12658 isprm6 12664 prmfac1 12669 pcpre1 12810 pcidlem 12841 pcprod 12864 pcfac 12868 pockthg 12875 1arith 12885 4sqlem11 12919 znidomb 14616 lgsdir 15708 lgsdilem2 15709 lgsne0 15711 lgsquadlem2 15751 2sqlem8 15796 |
| Copyright terms: Public domain | W3C validator |