ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemladdrl Unicode version

Theorem caucvgprlemladdrl 7619
Description: Lemma for caucvgpr 7623. Adding  S after embedding in positive reals, or adding it as a rational. (Contributed by Jim Kingdon, 8-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f  |-  ( ph  ->  F : N. --> Q. )
caucvgpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
caucvgpr.bnd  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
caucvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
caucvgprlemladd.s  |-  ( ph  ->  S  e.  Q. )
Assertion
Ref Expression
caucvgprlemladdrl  |-  ( ph  ->  { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  S ) }  C_  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )
Distinct variable groups:    A, j    j, F, u, l    n, F, k    k, L, j    S, l, u, j    j,
k, S
Allowed substitution hints:    ph( u, j, k, n, l)    A( u, k, n, l)    S( n)    L( u, n, l)

Proof of Theorem caucvgprlemladdrl
Dummy variables  r  f  g  h  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3758 . . . . . . . . 9  |-  ( j  =  a  ->  <. j ,  1o >.  =  <. a ,  1o >. )
21eceq1d 6537 . . . . . . . 8  |-  ( j  =  a  ->  [ <. j ,  1o >. ]  ~Q  =  [ <. a ,  1o >. ]  ~Q  )
32fveq2d 5490 . . . . . . 7  |-  ( j  =  a  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )
43oveq2d 5858 . . . . . 6  |-  ( j  =  a  ->  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )
5 fveq2 5486 . . . . . . 7  |-  ( j  =  a  ->  ( F `  j )  =  ( F `  a ) )
65oveq1d 5857 . . . . . 6  |-  ( j  =  a  ->  (
( F `  j
)  +Q  S )  =  ( ( F `
 a )  +Q  S ) )
74, 6breq12d 3995 . . . . 5  |-  ( j  =  a  ->  (
( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  S )  <->  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) ) )
87cbvrexv 2693 . . . 4  |-  ( E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  S )  <->  E. a  e.  N.  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )
98a1i 9 . . 3  |-  ( l  e.  Q.  ->  ( E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  S )  <->  E. a  e.  N.  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) ) )
109rabbiia 2711 . 2  |-  { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  S ) }  =  { l  e.  Q.  |  E. a  e.  N.  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 a )  +Q  S ) }
11 oveq1 5849 . . . . . . 7  |-  ( l  =  r  ->  (
l  +Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  )
)  =  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )
1211breq1d 3992 . . . . . 6  |-  ( l  =  r  ->  (
( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 a )  +Q  S )  <->  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) ) )
1312rexbidv 2467 . . . . 5  |-  ( l  =  r  ->  ( E. a  e.  N.  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 a )  +Q  S )  <->  E. a  e.  N.  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) ) )
1413elrab 2882 . . . 4  |-  ( r  e.  { l  e. 
Q.  |  E. a  e.  N.  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) }  <->  ( r  e.  Q.  /\  E. a  e.  N.  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) ) )
15 caucvgpr.f . . . . . . . . . . . . . . 15  |-  ( ph  ->  F : N. --> Q. )
1615ad4antr 486 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  F : N. --> Q. )
17 caucvgpr.cau . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
1817ad4antr 486 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  A. n  e.  N.  A. k  e. 
N.  ( n  <N  k  ->  ( ( F `
 n )  <Q 
( ( F `  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
19 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  b  e.  N. )
20 simpllr 524 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  a  e.  N. )
2116, 18, 19, 20caucvgprlemnbj 7608 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  -.  ( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( F `  a
) )
2215ad3antrrr 484 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  F : N. --> Q. )
2322ffvelrnda 5620 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  ( F `  b )  e.  Q. )
24 nnnq 7363 . . . . . . . . . . . . . . . . . 18  |-  ( b  e.  N.  ->  [ <. b ,  1o >. ]  ~Q  e.  Q. )
25 recclnq 7333 . . . . . . . . . . . . . . . . . 18  |-  ( [
<. b ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  e.  Q. )
2619, 24, 253syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  e.  Q. )
27 addclnq 7316 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F `  b
)  e.  Q.  /\  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  e.  Q. )  ->  ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  e.  Q. )
2823, 26, 27syl2anc 409 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  (
( F `  b
)  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
)  e.  Q. )
29 nnnq 7363 . . . . . . . . . . . . . . . . 17  |-  ( a  e.  N.  ->  [ <. a ,  1o >. ]  ~Q  e.  Q. )
30 recclnq 7333 . . . . . . . . . . . . . . . . 17  |-  ( [
<. a ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  e.  Q. )
3120, 29, 303syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  e.  Q. )
32 caucvgprlemladd.s . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  S  e.  Q. )
3332ad4antr 486 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  S  e.  Q. )
34 addassnqg 7323 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  e.  Q.  /\  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  e.  Q.  /\  S  e.  Q. )  ->  (
( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  +Q  S )  =  ( ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  +Q  ( ( *Q `  [ <. a ,  1o >. ]  ~Q  )  +Q  S ) ) )
3528, 31, 33, 34syl3anc 1228 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  (
( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  +Q  S )  =  ( ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  +Q  ( ( *Q `  [ <. a ,  1o >. ]  ~Q  )  +Q  S ) ) )
3635breq1d 3992 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  (
( ( ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  +Q  S )  <Q 
( ( F `  a )  +Q  S
)  <->  ( ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( ( *Q
`  [ <. a ,  1o >. ]  ~Q  )  +Q  S ) )  <Q 
( ( F `  a )  +Q  S
) ) )
37 ltanqg 7341 . . . . . . . . . . . . . . . 16  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
3837adantl 275 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  (
r  +Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 a )  +Q  S ) )  /\  b  e.  N. )  /\  ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )
)  ->  ( f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
39 addclnq 7316 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  e.  Q.  /\  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  e.  Q. )  ->  ( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  e. 
Q. )
4028, 31, 39syl2anc 409 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  (
( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  )
)  e.  Q. )
4116, 20ffvelrnd 5621 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  ( F `  a )  e.  Q. )
42 addcomnqg 7322 . . . . . . . . . . . . . . . 16  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
4342adantl 275 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  (
r  +Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 a )  +Q  S ) )  /\  b  e.  N. )  /\  ( f  e.  Q.  /\  g  e.  Q. )
)  ->  ( f  +Q  g )  =  ( g  +Q  f ) )
4438, 40, 41, 33, 43caovord2d 6011 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  (
( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( F `  a
)  <->  ( ( ( ( F `  b
)  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  )
)  +Q  S ) 
<Q  ( ( F `  a )  +Q  S
) ) )
45 addcomnqg 7322 . . . . . . . . . . . . . . . . 17  |-  ( ( S  e.  Q.  /\  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  e.  Q. )  ->  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  =  ( ( *Q `  [ <. a ,  1o >. ]  ~Q  )  +Q  S ) )
4633, 31, 45syl2anc 409 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  =  ( ( *Q
`  [ <. a ,  1o >. ]  ~Q  )  +Q  S ) )
4746oveq2d 5858 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  (
( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )  =  ( ( ( F `  b
)  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
)  +Q  ( ( *Q `  [ <. a ,  1o >. ]  ~Q  )  +Q  S ) ) )
4847breq1d 3992 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  (
( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) )  <Q  (
( F `  a
)  +Q  S )  <-> 
( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( ( *Q `  [ <. a ,  1o >. ]  ~Q  )  +Q  S ) )  <Q 
( ( F `  a )  +Q  S
) ) )
4936, 44, 483bitr4rd 220 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  (
( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) )  <Q  (
( F `  a
)  +Q  S )  <-> 
( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( F `  a
) ) )
5021, 49mtbird 663 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  -.  ( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) )  <Q  (
( F `  a
)  +Q  S ) )
5150nrexdv 2559 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  -.  E. b  e.  N.  (
( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )  <Q  ( ( F `  a )  +Q  S ) )
5251intnand 921 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  -.  ( ( ( F `
 a )  +Q  S )  e.  Q.  /\ 
E. b  e.  N.  ( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) )  <Q  (
( F `  a
)  +Q  S ) ) )
5317ad3antrrr 484 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  A. n  e.  N.  A. k  e. 
N.  ( n  <N  k  ->  ( ( F `
 n )  <Q 
( ( F `  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
54 caucvgpr.bnd . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
55 fveq2 5486 . . . . . . . . . . . . . . . . 17  |-  ( j  =  b  ->  ( F `  j )  =  ( F `  b ) )
5655breq2d 3994 . . . . . . . . . . . . . . . 16  |-  ( j  =  b  ->  ( A  <Q  ( F `  j )  <->  A  <Q  ( F `  b ) ) )
5756cbvralv 2692 . . . . . . . . . . . . . . 15  |-  ( A. j  e.  N.  A  <Q  ( F `  j
)  <->  A. b  e.  N.  A  <Q  ( F `  b ) )
5854, 57sylib 121 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. b  e.  N.  A  <Q  ( F `  b ) )
5958ad3antrrr 484 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  A. b  e.  N.  A  <Q  ( F `  b )
)
60 caucvgpr.lim . . . . . . . . . . . . . 14  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
61 opeq1 3758 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( j  =  b  ->  <. j ,  1o >.  =  <. b ,  1o >. )
6261eceq1d 6537 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  =  b  ->  [ <. j ,  1o >. ]  ~Q  =  [ <. b ,  1o >. ]  ~Q  )
6362fveq2d 5490 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  =  b  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )
6463oveq2d 5858 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =  b  ->  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( l  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) )
6564, 55breq12d 3995 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  b  ->  (
( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  ( l  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
( F `  b
) ) )
6665cbvrexv 2693 . . . . . . . . . . . . . . . . 17  |-  ( E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  E. b  e.  N.  ( l  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
( F `  b
) )
6766a1i 9 . . . . . . . . . . . . . . . 16  |-  ( l  e.  Q.  ->  ( E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  E. b  e.  N.  ( l  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
( F `  b
) ) )
6867rabbiia 2711 . . . . . . . . . . . . . . 15  |-  { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }  =  { l  e.  Q.  |  E. b  e.  N.  ( l  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  ( F `  b ) }
6955, 63oveq12d 5860 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =  b  ->  (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) )
7069breq1d 3992 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  b  ->  (
( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q  u ) )
7170cbvrexv 2693 . . . . . . . . . . . . . . . . 17  |-  ( E. j  e.  N.  (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  E. b  e.  N.  ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q  u )
7271a1i 9 . . . . . . . . . . . . . . . 16  |-  ( u  e.  Q.  ->  ( E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  E. b  e.  N.  ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q  u ) )
7372rabbiia 2711 . . . . . . . . . . . . . . 15  |-  { u  e.  Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }  =  {
u  e.  Q.  |  E. b  e.  N.  ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  u }
7468, 73opeq12i 3763 . . . . . . . . . . . . . 14  |-  <. { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.  = 
<. { l  e.  Q.  |  E. b  e.  N.  ( l  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  ( F `  b ) } ,  { u  e.  Q.  |  E. b  e.  N.  ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  u } >.
7560, 74eqtri 2186 . . . . . . . . . . . . 13  |-  L  = 
<. { l  e.  Q.  |  E. b  e.  N.  ( l  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  ( F `  b ) } ,  { u  e.  Q.  |  E. b  e.  N.  ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  u } >.
7632ad3antrrr 484 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  S  e.  Q. )
7729, 30syl 14 . . . . . . . . . . . . . . 15  |-  ( a  e.  N.  ->  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  e.  Q. )
7877ad2antlr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  e.  Q. )
79 addclnq 7316 . . . . . . . . . . . . . 14  |-  ( ( S  e.  Q.  /\  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  e.  Q. )  ->  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  e.  Q. )
8076, 78, 79syl2anc 409 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  e.  Q. )
8122, 53, 59, 75, 80caucvgprlemladdfu 7618 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  ( 2nd `  ( L  +P.  <. { l  |  l 
<Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >. )
)  C_  { u  e.  Q.  |  E. b  e.  N.  ( ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )  <Q  u } )
8281sseld 3141 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  (
( ( F `  a )  +Q  S
)  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >. )
)  ->  ( ( F `  a )  +Q  S )  e.  {
u  e.  Q.  |  E. b  e.  N.  ( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) )  <Q  u } ) )
83 breq2 3986 . . . . . . . . . . . . 13  |-  ( u  =  ( ( F `
 a )  +Q  S )  ->  (
( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) )  <Q  u  <->  ( ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )  <Q  ( ( F `  a )  +Q  S ) ) )
8483rexbidv 2467 . . . . . . . . . . . 12  |-  ( u  =  ( ( F `
 a )  +Q  S )  ->  ( E. b  e.  N.  ( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) )  <Q  u  <->  E. b  e.  N.  (
( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )  <Q  ( ( F `  a )  +Q  S ) ) )
8584elrab 2882 . . . . . . . . . . 11  |-  ( ( ( F `  a
)  +Q  S )  e.  { u  e. 
Q.  |  E. b  e.  N.  ( ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )  <Q  u }  <->  ( ( ( F `  a )  +Q  S )  e. 
Q.  /\  E. b  e.  N.  ( ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )  <Q 
( ( F `  a )  +Q  S
) ) )
8682, 85syl6ib 160 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  (
( ( F `  a )  +Q  S
)  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >. )
)  ->  ( (
( F `  a
)  +Q  S )  e.  Q.  /\  E. b  e.  N.  (
( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )  <Q  ( ( F `  a )  +Q  S ) ) ) )
8752, 86mtod 653 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  -.  ( ( F `  a )  +Q  S
)  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >. )
) )
8815, 17, 54, 60caucvgprlemcl 7617 . . . . . . . . . . . 12  |-  ( ph  ->  L  e.  P. )
8988ad3antrrr 484 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  L  e.  P. )
90 nqprlu 7488 . . . . . . . . . . . 12  |-  ( ( S  +Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  )
)  e.  Q.  ->  <. { l  |  l 
<Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >.  e.  P. )
9180, 90syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q  u } >.  e.  P. )
92 addclpr 7478 . . . . . . . . . . 11  |-  ( ( L  e.  P.  /\  <. { l  |  l 
<Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >.  e.  P. )  ->  ( L  +P.  <. { l  |  l 
<Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >. )  e.  P. )
9389, 91, 92syl2anc 409 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  u } >. )  e.  P. )
94 prop 7416 . . . . . . . . . . 11  |-  ( ( L  +P.  <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q  u } >. )  e.  P.  -> 
<. ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  u } >. ) ) ,  ( 2nd `  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >. )
) >.  e.  P. )
95 prloc 7432 . . . . . . . . . . 11  |-  ( (
<. ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  u } >. ) ) ,  ( 2nd `  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >. )
) >.  e.  P.  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 a )  +Q  S ) )  -> 
( ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  u } >. ) )  \/  ( ( F `  a )  +Q  S )  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  u } >. ) ) ) )
9694, 95sylan 281 . . . . . . . . . 10  |-  ( ( ( L  +P.  <. { l  |  l  <Q 
( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >. )  e.  P.  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  ( ( F `  a )  +Q  S
) )  ->  (
( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >. )
)  \/  ( ( F `  a )  +Q  S )  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  u } >. ) ) ) )
9793, 96sylancom 417 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  (
( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >. )
)  \/  ( ( F `  a )  +Q  S )  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  u } >. ) ) ) )
9887, 97ecased 1339 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  (
r  +Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  )
)  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >. )
) )
99 simpllr 524 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  r  e.  Q. )
10089, 76, 99, 78caucvgprlemcanl 7585 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  (
( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >. )
)  <->  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ) )
10198, 100mpbid 146 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )
102101ex 114 . . . . . 6  |-  ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  ->  (
( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 a )  +Q  S )  ->  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ) )
103102rexlimdva 2583 . . . . 5  |-  ( (
ph  /\  r  e.  Q. )  ->  ( E. a  e.  N.  (
r  +Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 a )  +Q  S )  ->  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ) )
104103expimpd 361 . . . 4  |-  ( ph  ->  ( ( r  e. 
Q.  /\  E. a  e.  N.  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ) )
10514, 104syl5bi 151 . . 3  |-  ( ph  ->  ( r  e.  {
l  e.  Q.  |  E. a  e.  N.  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 a )  +Q  S ) }  ->  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ) )
106105ssrdv 3148 . 2  |-  ( ph  ->  { l  e.  Q.  |  E. a  e.  N.  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 a )  +Q  S ) }  C_  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )
10710, 106eqsstrid 3188 1  |-  ( ph  ->  { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  S ) }  C_  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 968    = wceq 1343    e. wcel 2136   {cab 2151   A.wral 2444   E.wrex 2445   {crab 2448    C_ wss 3116   <.cop 3579   class class class wbr 3982   -->wf 5184   ` cfv 5188  (class class class)co 5842   1stc1st 6106   2ndc2nd 6107   1oc1o 6377   [cec 6499   N.cnpi 7213    <N clti 7216    ~Q ceq 7220   Q.cnq 7221    +Q cplq 7223   *Qcrq 7225    <Q cltq 7226   P.cnp 7232    +P. cpp 7234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-iplp 7409  df-iltp 7411
This theorem is referenced by:  caucvgprlem1  7620
  Copyright terms: Public domain W3C validator