ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oneli Unicode version

Theorem oneli 4493
Description: A member of an ordinal number is an ordinal number. Theorem 7M(a) of [Enderton] p. 192. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
on.1  |-  A  e.  On
Assertion
Ref Expression
oneli  |-  ( B  e.  A  ->  B  e.  On )

Proof of Theorem oneli
StepHypRef Expression
1 on.1 . 2  |-  A  e.  On
2 onelon 4449 . 2  |-  ( ( A  e.  On  /\  B  e.  A )  ->  B  e.  On )
31, 2mpan 424 1  |-  ( B  e.  A  ->  B  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2178   Oncon0 4428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-in 3180  df-ss 3187  df-uni 3865  df-tr 4159  df-iord 4431  df-on 4433
This theorem is referenced by:  nnon  4676
  Copyright terms: Public domain W3C validator