ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ontrci Unicode version

Theorem ontrci 4421
Description: An ordinal number is a transitive class. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
on.1  |-  A  e.  On
Assertion
Ref Expression
ontrci  |-  Tr  A

Proof of Theorem ontrci
StepHypRef Expression
1 on.1 . . 3  |-  A  e.  On
21onordi 4420 . 2  |-  Ord  A
3 ordtr 4372 . 2  |-  ( Ord 
A  ->  Tr  A
)
42, 3ax-mp 5 1  |-  Tr  A
Colors of variables: wff set class
Syntax hints:    e. wcel 2146   Tr wtr 4096   Ord word 4356   Oncon0 4357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-in 3133  df-ss 3140  df-uni 3806  df-tr 4097  df-iord 4360  df-on 4362
This theorem is referenced by:  onunisuci  4426  exmidonfinlem  7182  bj-el2oss1o  14066  nnsf  14295
  Copyright terms: Public domain W3C validator