ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ontrci Unicode version

Theorem ontrci 4428
Description: An ordinal number is a transitive class. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
on.1  |-  A  e.  On
Assertion
Ref Expression
ontrci  |-  Tr  A

Proof of Theorem ontrci
StepHypRef Expression
1 on.1 . . 3  |-  A  e.  On
21onordi 4427 . 2  |-  Ord  A
3 ordtr 4379 . 2  |-  ( Ord 
A  ->  Tr  A
)
42, 3ax-mp 5 1  |-  Tr  A
Colors of variables: wff set class
Syntax hints:    e. wcel 2148   Tr wtr 4102   Ord word 4363   Oncon0 4364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-in 3136  df-ss 3143  df-uni 3811  df-tr 4103  df-iord 4367  df-on 4369
This theorem is referenced by:  onunisuci  4433  exmidonfinlem  7192  bj-el2oss1o  14529  nnsf  14757
  Copyright terms: Public domain W3C validator