| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oneli | GIF version | ||
| Description: A member of an ordinal number is an ordinal number. Theorem 7M(a) of [Enderton] p. 192. (Contributed by NM, 11-Jun-1994.) |
| Ref | Expression |
|---|---|
| on.1 | ⊢ 𝐴 ∈ On |
| Ref | Expression |
|---|---|
| oneli | ⊢ (𝐵 ∈ 𝐴 → 𝐵 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | on.1 | . 2 ⊢ 𝐴 ∈ On | |
| 2 | onelon 4435 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) | |
| 3 | 1, 2 | mpan 424 | 1 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ∈ On) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 Oncon0 4414 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-in 3173 df-ss 3180 df-uni 3853 df-tr 4147 df-iord 4417 df-on 4419 |
| This theorem is referenced by: nnon 4662 |
| Copyright terms: Public domain | W3C validator |