ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onelon Unicode version

Theorem onelon 4369
Description: An element of an ordinal number is an ordinal number. Theorem 2.2(iii) of [BellMachover] p. 469. (Contributed by NM, 26-Oct-2003.)
Assertion
Ref Expression
onelon  |-  ( ( A  e.  On  /\  B  e.  A )  ->  B  e.  On )

Proof of Theorem onelon
StepHypRef Expression
1 eloni 4360 . 2  |-  ( A  e.  On  ->  Ord  A )
2 ordelon 4368 . 2  |-  ( ( Ord  A  /\  B  e.  A )  ->  B  e.  On )
31, 2sylan 281 1  |-  ( ( A  e.  On  /\  B  e.  A )  ->  B  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2141   Ord word 4347   Oncon0 4348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-in 3127  df-ss 3134  df-uni 3797  df-tr 4088  df-iord 4351  df-on 4353
This theorem is referenced by:  oneli  4413  ssorduni  4471  unon  4495  tfrlemibacc  6305  tfrlemibxssdm  6306  tfrlemibfn  6307  tfrexlem  6313  tfr1onlemsucaccv  6320  tfrcllemsucaccv  6333  sucinc2  6425  oav2  6442  omv2  6444
  Copyright terms: Public domain W3C validator