ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onelon Unicode version

Theorem onelon 4430
Description: An element of an ordinal number is an ordinal number. Theorem 2.2(iii) of [BellMachover] p. 469. (Contributed by NM, 26-Oct-2003.)
Assertion
Ref Expression
onelon  |-  ( ( A  e.  On  /\  B  e.  A )  ->  B  e.  On )

Proof of Theorem onelon
StepHypRef Expression
1 eloni 4421 . 2  |-  ( A  e.  On  ->  Ord  A )
2 ordelon 4429 . 2  |-  ( ( Ord  A  /\  B  e.  A )  ->  B  e.  On )
31, 2sylan 283 1  |-  ( ( A  e.  On  /\  B  e.  A )  ->  B  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2175   Ord word 4408   Oncon0 4409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-in 3171  df-ss 3178  df-uni 3850  df-tr 4142  df-iord 4412  df-on 4414
This theorem is referenced by:  oneli  4474  ssorduni  4534  unon  4558  tfrlemibacc  6411  tfrlemibxssdm  6412  tfrlemibfn  6413  tfrexlem  6419  tfr1onlemsucaccv  6426  tfrcllemsucaccv  6439  sucinc2  6531  oav2  6548  omv2  6550
  Copyright terms: Public domain W3C validator