ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onelon Unicode version

Theorem onelon 4415
Description: An element of an ordinal number is an ordinal number. Theorem 2.2(iii) of [BellMachover] p. 469. (Contributed by NM, 26-Oct-2003.)
Assertion
Ref Expression
onelon  |-  ( ( A  e.  On  /\  B  e.  A )  ->  B  e.  On )

Proof of Theorem onelon
StepHypRef Expression
1 eloni 4406 . 2  |-  ( A  e.  On  ->  Ord  A )
2 ordelon 4414 . 2  |-  ( ( Ord  A  /\  B  e.  A )  ->  B  e.  On )
31, 2sylan 283 1  |-  ( ( A  e.  On  /\  B  e.  A )  ->  B  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2164   Ord word 4393   Oncon0 4394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-in 3159  df-ss 3166  df-uni 3836  df-tr 4128  df-iord 4397  df-on 4399
This theorem is referenced by:  oneli  4459  ssorduni  4519  unon  4543  tfrlemibacc  6379  tfrlemibxssdm  6380  tfrlemibfn  6381  tfrexlem  6387  tfr1onlemsucaccv  6394  tfrcllemsucaccv  6407  sucinc2  6499  oav2  6516  omv2  6518
  Copyright terms: Public domain W3C validator