Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onelon | Unicode version |
Description: An element of an ordinal number is an ordinal number. Theorem 2.2(iii) of [BellMachover] p. 469. (Contributed by NM, 26-Oct-2003.) |
Ref | Expression |
---|---|
onelon |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 4360 | . 2 | |
2 | ordelon 4368 | . 2 | |
3 | 1, 2 | sylan 281 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2141 word 4347 con0 4348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-in 3127 df-ss 3134 df-uni 3797 df-tr 4088 df-iord 4351 df-on 4353 |
This theorem is referenced by: oneli 4413 ssorduni 4471 unon 4495 tfrlemibacc 6305 tfrlemibxssdm 6306 tfrlemibfn 6307 tfrexlem 6313 tfr1onlemsucaccv 6320 tfrcllemsucaccv 6333 sucinc2 6425 oav2 6442 omv2 6444 |
Copyright terms: Public domain | W3C validator |