| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnon | Unicode version | ||
| Description: A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.) |
| Ref | Expression |
|---|---|
| nnon |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omelon 4646 |
. 2
| |
| 2 | 1 | oneli 4464 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-int 3876 df-tr 4133 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 |
| This theorem is referenced by: nnoni 4648 nnord 4649 omsson 4650 nnsucpred 4654 nnpredcl 4660 frecrdg 6475 onasuc 6533 onmsuc 6540 nna0 6541 nnm0 6542 nnasuc 6543 nnmsuc 6544 nnsucelsuc 6558 nnsucsssuc 6559 nntri2or2 6565 nntr2 6570 nnaordi 6575 nnaword1 6580 nnaordex 6595 phpelm 6936 phplem4on 6937 omp1eomlem 7169 finnum 7261 pion 7394 prarloclemlo 7578 nninfctlemfo 12232 ennnfonelemk 12642 pwle2 15729 |
| Copyright terms: Public domain | W3C validator |