![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnon | Unicode version |
Description: A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.) |
Ref | Expression |
---|---|
nnon |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omelon 4620 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | oneli 4440 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-iinf 4599 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-v 2751 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-uni 3822 df-int 3857 df-tr 4114 df-iord 4378 df-on 4380 df-suc 4383 df-iom 4602 |
This theorem is referenced by: nnoni 4622 nnord 4623 omsson 4624 nnsucpred 4628 nnpredcl 4634 frecrdg 6422 onasuc 6480 onmsuc 6487 nna0 6488 nnm0 6489 nnasuc 6490 nnmsuc 6491 nnsucelsuc 6505 nnsucsssuc 6506 nntri2or2 6512 nntr2 6517 nnaordi 6522 nnaword1 6527 nnaordex 6542 phpelm 6879 phplem4on 6880 omp1eomlem 7106 finnum 7195 pion 7322 prarloclemlo 7506 ennnfonelemk 12414 pwle2 15020 |
Copyright terms: Public domain | W3C validator |