| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnon | Unicode version | ||
| Description: A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.) |
| Ref | Expression |
|---|---|
| nnon |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omelon 4701 |
. 2
| |
| 2 | 1 | oneli 4519 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-tr 4183 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 |
| This theorem is referenced by: nnoni 4703 nnord 4704 omsson 4705 nnsucpred 4709 nnpredcl 4715 frecrdg 6554 onasuc 6612 onmsuc 6619 nna0 6620 nnm0 6621 nnasuc 6622 nnmsuc 6623 nnsucelsuc 6637 nnsucsssuc 6638 nntri2or2 6644 nntr2 6649 nnaordi 6654 nnaword1 6659 nnaordex 6674 phpelm 7028 phplem4on 7029 omp1eomlem 7261 finnum 7355 pion 7497 prarloclemlo 7681 nninfctlemfo 12561 ennnfonelemk 12971 pwle2 16364 |
| Copyright terms: Public domain | W3C validator |