| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnon | Unicode version | ||
| Description: A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.) |
| Ref | Expression |
|---|---|
| nnon |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omelon 4657 |
. 2
| |
| 2 | 1 | oneli 4475 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-tr 4143 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 |
| This theorem is referenced by: nnoni 4659 nnord 4660 omsson 4661 nnsucpred 4665 nnpredcl 4671 frecrdg 6494 onasuc 6552 onmsuc 6559 nna0 6560 nnm0 6561 nnasuc 6562 nnmsuc 6563 nnsucelsuc 6577 nnsucsssuc 6578 nntri2or2 6584 nntr2 6589 nnaordi 6594 nnaword1 6599 nnaordex 6614 phpelm 6963 phplem4on 6964 omp1eomlem 7196 finnum 7290 pion 7423 prarloclemlo 7607 nninfctlemfo 12361 ennnfonelemk 12771 pwle2 15939 |
| Copyright terms: Public domain | W3C validator |