ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oneluni GIF version

Theorem oneluni 4499
Description: An ordinal number equals its union with any element. (Contributed by NM, 13-Jun-1994.)
Hypothesis
Ref Expression
on.1 𝐴 ∈ On
Assertion
Ref Expression
oneluni (𝐵𝐴 → (𝐴𝐵) = 𝐴)

Proof of Theorem oneluni
StepHypRef Expression
1 on.1 . . 3 𝐴 ∈ On
21onelssi 4497 . 2 (𝐵𝐴𝐵𝐴)
3 ssequn2 3357 . 2 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐴)
42, 3sylib 122 1 (𝐵𝐴 → (𝐴𝐵) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  wcel 2180  cun 3175  wss 3177  Oncon0 4431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-uni 3868  df-tr 4162  df-iord 4434  df-on 4436
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator