| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oneluni | GIF version | ||
| Description: An ordinal number equals its union with any element. (Contributed by NM, 13-Jun-1994.) |
| Ref | Expression |
|---|---|
| on.1 | ⊢ 𝐴 ∈ On |
| Ref | Expression |
|---|---|
| oneluni | ⊢ (𝐵 ∈ 𝐴 → (𝐴 ∪ 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | on.1 | . . 3 ⊢ 𝐴 ∈ On | |
| 2 | 1 | onelssi 4480 | . 2 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴) |
| 3 | ssequn2 3347 | . 2 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐴 ∪ 𝐵) = 𝐴) | |
| 4 | 2, 3 | sylib 122 | 1 ⊢ (𝐵 ∈ 𝐴 → (𝐴 ∪ 𝐵) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ∪ cun 3165 ⊆ wss 3167 Oncon0 4414 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-uni 3853 df-tr 4147 df-iord 4417 df-on 4419 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |