ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oneluni GIF version

Theorem oneluni 4466
Description: An ordinal number equals its union with any element. (Contributed by NM, 13-Jun-1994.)
Hypothesis
Ref Expression
on.1 𝐴 ∈ On
Assertion
Ref Expression
oneluni (𝐵𝐴 → (𝐴𝐵) = 𝐴)

Proof of Theorem oneluni
StepHypRef Expression
1 on.1 . . 3 𝐴 ∈ On
21onelssi 4464 . 2 (𝐵𝐴𝐵𝐴)
3 ssequn2 3336 . 2 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐴)
42, 3sylib 122 1 (𝐵𝐴 → (𝐴𝐵) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  cun 3155  wss 3157  Oncon0 4398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-uni 3840  df-tr 4132  df-iord 4401  df-on 4403
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator